• J. Nucl. Med. · Feb 2017

    Review

    Validation of MRI Determination of the Penumbra by PET Measurements in Ischemic Stroke.

    • Wolf-Dieter Heiss and Olivier Zaro Weber.
    • Max Planck Institute for Metabolism Research, Cologne, Germany wdh@nf.mpg.de.
    • J. Nucl. Med. 2017 Feb 1; 58 (2): 187-193.

    AbstractThe concept of the ischemic penumbra was formulated on the basis of animal experiments showing functional impairment and electrophysiologic disturbances with decreasing flow to the brain below defined values (the threshold for function) and irreversible tissue damage with blood supply further decreased (the threshold for infarction). The perfusion range between these thresholds was termed the "penumbra," and restitution of flow above the functional threshold was able to reverse the deficits without permanent damage. In further experiments, the dependency of the development of irreversible lesions on the interaction of the severity and the duration of critically reduced blood flow was established, proving that the lower the flow, the shorter the time for efficient reperfusion. As a consequence, infarction develops from the core of ischemia to the areas of less severe hypoperfusion. The translation of this experimental concept as the basis for the efficient treatment of stroke requires noninvasive methods with which regional flow and energy metabolism can be repeatedly investigated to demonstrate penumbra tissue, which can benefit from therapeutic interventions. PET allows the quantification of regional cerebral blood flow, the regional oxygen extraction fraction, and the regional metabolic rate for oxygen. With these variables, clear definitions of irreversible tissue damage and of critically hypoperfused but potentially salvageable tissue (i.e., the penumbra) in stroke patients can be achieved. However, PET is a research tool, and its complex logistics limit clinical routine applications. Perfusion-weighted or diffusion-weighted MRI is a widely applicable clinical tool, and the "mismatch" between perfusion-weighted and diffusion-weighted abnormalities serves as an indicator of the penumbra. However, comparative studies of perfusion-weighted or diffusion-weighted MRI and PET have indicated overestimation of the core of irreversible infarction as well as of the penumbra by the MRI modalities. Some of these discrepancies can be explained by the nonselective application of relative perfusion thresholds, which might be improved by more complex analytic procedures. The heterogeneity of the MRI signatures used for the definition of the mismatch are also responsible for disappointing results in the application of perfusion-weighted or diffusion-weighted MRI to the selection of patients for clinical trials. As long as validation of the mismatch selection paradigm is lacking, the use of this paradigm as a surrogate marker of outcome is limited.© 2017 by the Society of Nuclear Medicine and Molecular Imaging.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…