• Critical care medicine · Aug 2021

    A Simulated Prospective Evaluation of a Deep Learning Model for Real-Time Prediction of Clinical Deterioration Among Ward Patients.

    • Parth K Shah, Jennifer C Ginestra, Lyle H Ungar, Paul Junker, Jeff I Rohrbach, Neil O Fishman, and Gary E Weissman.
    • Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
    • Crit. Care Med. 2021 Aug 1; 49 (8): 131213211312-1321.

    ObjectivesThe National Early Warning Score, Modified Early Warning Score, and quick Sepsis-related Organ Failure Assessment can predict clinical deterioration. These scores exhibit only moderate performance and are often evaluated using aggregated measures over time. A simulated prospective validation strategy that assesses multiple predictions per patient-day would provide the best pragmatic evaluation. We developed a deep recurrent neural network deterioration model and conducted a simulated prospective evaluation.DesignRetrospective cohort study.SettingFour hospitals in Pennsylvania.PatientsInpatient adults discharged between July 1, 2017, and June 30, 2019.InterventionsNone.Measurements And Main ResultsWe trained a deep recurrent neural network and logistic regression model using data from electronic health records to predict hourly the 24-hour composite outcome of transfer to ICU or death. We analyzed 146,446 hospitalizations with 16.75 million patient-hours. The hourly event rate was 1.6% (12,842 transfers or deaths, corresponding to 260,295 patient-hours within the predictive horizon). On a hold-out dataset, the deep recurrent neural network achieved an area under the precision-recall curve of 0.042 (95% CI, 0.04-0.043), comparable with logistic regression model (0.043; 95% CI 0.041 to 0.045), and outperformed National Early Warning Score (0.034; 95% CI, 0.032-0.035), Modified Early Warning Score (0.028; 95% CI, 0.027- 0.03), and quick Sepsis-related Organ Failure Assessment (0.021; 95% CI, 0.021-0.022). For a fixed sensitivity of 50%, the deep recurrent neural network achieved a positive predictive value of 3.4% (95% CI, 3.4-3.5) and outperformed logistic regression model (3.1%; 95% CI 3.1-3.2), National Early Warning Score (2.0%; 95% CI, 2.0-2.0), Modified Early Warning Score (1.5%; 95% CI, 1.5-1.5), and quick Sepsis-related Organ Failure Assessment (1.5%; 95% CI, 1.5-1.5).ConclusionsCommonly used early warning scores for clinical decompensation, along with a logistic regression model and a deep recurrent neural network model, show very poor performance characteristics when assessed using a simulated prospective validation. None of these models may be suitable for real-time deployment.Copyright © 2021 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.