• Oxid Med Cell Longev · Jan 2019

    CD28 Deficiency Ameliorates Thoracic Blast Exposure-Induced Oxidative Stress and Apoptosis in the Brain through the PI3K/Nrf2/Keap1 Signaling Pathway.

    • Peifang Cong, Changci Tong, Ying Liu, Lin Shi, Xiuyun Shi, Yan Zhao, Keshen Xiao, Hongxu Jin, Yunen Liu, and Mingxiao Hou.
    • College of Medicine and Biological Information Engineering, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang l10016, China.
    • Oxid Med Cell Longev. 2019 Jan 1; 2019: 8460290.

    AbstractBlast exposure is a worldwide public health concern, but most related research has been focused on direct injury. Thoracic blast exposure-induced neurotrauma is a type of indirect injuries where research is lacking. As CD28 stimulates T cell activation and survival and contributes to inflammation initiation, it may play a role in thoracic blast exposure-induced neurotrauma. However, it has not been investigated. To explore the effects of CD28 on thoracic blast exposure-induced brain injury and its potential molecular mechanisms, a mouse model of thoracic blast exposure-induced brain injury was established. Fifty C57BL/6 wild-type (WT) and fifty CD28 knockout (CD28-/-) mice were randomly divided into five groups (one control group and four model groups), with ten mice (from each of the two models) for each group. Lung and brain tissue and serum samples were collected at 12 h, 24 h, 48 h, and 1 week after thoracic blast exposure. Histopathological changes were detected by hematoxylin-eosin staining. The expressions of inflammatory-related factors were detected by ELISA. Oxidative stress in the brain tissue was evaluated by determining the generation of reactive oxygen species (ROS) and the expressions of thioredoxin (TRX), malondialdehyde (MDA), SOD-1, and SOD-2. Apoptosis in the brain tissue was evaluated by TUNEL staining and the levels of Bax, Bcl-xL, Bad, Cytochrome C, and caspase-3. In addition, proteins of related pathways were also studied by western blotting and immunofluorescence. We found that CD28 deficiency significantly reduced thoracic blast exposure-induced histopathological changes and decreased the levels of inflammatory-related factors, including IL-1β, TNF-α, and S100β. In the brain tissue, CD28 deficiency also significantly attenuated thoracic blast exposure-induced generation of ROS and expressions of MDA, TRX, SOD-1, and SOD-2; lowered the number of apoptotic cells and the expression of Bax, cleaved caspase-3, Cytochrome C, and Bad; and maintained Bcl-xL expression. Additionally, CD28 deficiency significantly ameliorated thoracic blast exposure-induced increases of p-PI3K and Keap1 and the decrease of Nrf2 expression in the brain. Our results indicate that CD28 deficiency has a protective effect on thoracic blast exposure-induced brain injury that might be associated with the PI3K/Nrf2/Keap1 signaling pathway.Copyright © 2019 Peifang Cong et al.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…