-
- Noriyuki Kimura, Toshihide Kumamoto, Takahiro Oniki, Miwa Nomura, Kenichiro Nakamura, Yoshitake Abe, Yusuke Hazama, and Hidetsugu Ueyama.
- Department of Neurology and Neuromuscular Disorders, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita 879-5593, Japan.
- Muscle Nerve. 2009 Apr 1; 39 (4): 521-8.
AbstractPrevious studies have documented the presence of rimmed vacuoles, atrophic fibers, and increased lysosomal cathepsin activity in skeletal muscle from animal models of chloroquine-induced myopathy, suggesting that muscle fibers in this type of myopathy may be degraded via the lysosomal-proteolysis pathway. Given recent evidence of abnormal ubiquitin accumulation in rimmed vacuoles, in this study we chose to examine the significance of the ubiquitin-proteasome proteolytic system in the process of muscle fiber destruction in experimental chloroquine myopathy. Expression of ubiquitin, 26S proteasome proteins, and ubiquitin ligases, such as muscle-specific RING finger-1 (MuRF-1) and atrogin-1/muscle atrophy F-box protein (MAFbx), was analyzed in innervated and denervated rat soleus muscles after treatment with either saline or chloroquine. Abnormal accumulation of rimmed vacuoles was observed only in chloroquine-treated denervated muscles. Ubiquitin and proteasome immunostaining, and ubiquitin, MuRF-1, and atrogin-1/MAFbx mRNAs were significantly increased in denervated soleus muscles from saline- and chloroquine-treated rats when compared with contralateral innervated muscles. Further, ubiquitin and ubiquitin ligase mRNA levels were higher in denervated muscles from chloroquine-treated rats when compared with saline-treated rats. These data demonstrate increased proteasomes and ubiquitin in denervated muscles from chloroquine-treated rats and suggest that the ubiquitin-proteasome proteolysis pathway as well as the lysosomal-proteolysis pathway mediate muscle fiber destruction in experimental chloroquine myopathy.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.