-
- Sha Liu, Yumin Zhou, Suixin Liu, Xinyu Chen, Weifeng Zou, Dongxing Zhao, Xiaochen Li, Jinding Pu, Lingmei Huang, Jinlong Chen, Bing Li, Shiliang Liu, and Pixin Ran.
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Thorax. 2017 Sep 1; 72 (9): 788-795.
ObjectiveThe association between exposure to ambient particles with a median aerodynamic diameter less than 10/2.5 µm (particulate matter, PM10/2.5) and COPD remains unclear. Our study objective was to examine the association between ambient PM10/2.5 concentrations and lung functions in adults.MethodsA cross-sectional study was conducted in southern China. Seven clusters were randomly selected from four cities across Guangdong province. Residents aged ≥20 years in the participating clusters were randomly recruited; all eligible participants were examined with a standardised questionnaire and spirometry. COPD was defined as a post-bronchodilator FEV1/FVC less than 70%. Atmosphere PM sampling was conducted across the clusters along with our survey.ResultsOf the subjects initially recruited, 84.4% (n=5993) were included for analysis. COPD prevalence and atmosphere PM concentration varied significantly among the seven clusters. COPD prevalence was significantly associated with elevated PM concentration levels: adjusted OR 2.416 (95% CI 1.417 to 4.118) for >35 and ≤75 µg/m3 and 2.530 (1.280 to 5.001) for >75 µg/m3 compared with the level of ≤35 µg/m3 for PM2.5; adjusted OR 2.442 (95% CI 1.449 to 4.117) for >50 and ≤150 µg/m3 compared with the level of ≤50 µg/m3 for PM1. A 10 µg/m3 increase in PM2.5 concentrations was associated with a 26 mL (95% CI -43 to -9) decrease in FEV1, a 28 mL (-49 to -8) decrease in FVC and a 0.09% decrease (-0.170 to -0.010) in FEV1/FVC ratio. The associations of COPD with PM10 were consistent with PM2.5 but slightly weaker.ConclusionsExposure to higher PM concentrations was strongly associated with increased COPD prevalence and declined respiratory function.Trial Registration NumberChiCTR-OO-14004264; Post-results.Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.