• Annals of family medicine · Mar 2021

    The Use of Primary Care Big Data in Understanding the Pharmacoepidemiology of COVID-19: A Consensus Statement From the COVID-19 Primary Care Database Consortium.

    • Hajira Dambha-Miller, Simon J Griffin, Duncan Young, Peter Watkinson, Pui San Tan, Ashley K Clift, Rupert A Payne, Carol Coupland, Jemma C Hopewell, Jonathan Mant, Richard M Martin, and Julia Hippisley-Cox.
    • Ann Fam Med. 2021 Mar 1; 19 (2): 135140135-140.

    AbstractThe use of big data containing millions of primary care medical records provides an opportunity for rapid research to help inform patient care and policy decisions during the first and subsequent waves of the coronavirus disease 2019 (COVID-19) pandemic. Routinely collected primary care data have previously been used for national pandemic surveillance, quantifying associations between exposures and outcomes, identifying high risk populations, and examining the effects of interventions at scale, but there is no consensus on how to effectively conduct or report these data for COVID-19 research. A COVID-19 primary care database consortium was established in April 2020 and its researchers have ongoing COVID-19 projects in overlapping data sets with over 40 million primary care records in the United Kingdom that are variously linked to public health, secondary care, and vital status records. This consensus agreement is aimed at facilitating transparency and rigor in methodological approaches, and consistency in defining and reporting cases, exposures, confounders, stratification variables, and outcomes in relation to the pharmacoepidemiology of COVID-19. This will facilitate comparison, validation, and meta-analyses of research during and after the pandemic.© 2021 Annals of Family Medicine, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…