• J Clin Neurophysiol · Sep 2019

    Observational Study

    Early EEG Features for Outcome Prediction After Cardiac Arrest in Children.

    • France W Fung, Alexis A Topjian, Rui Xiao, and Nicholas S Abend.
    • Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.
    • J Clin Neurophysiol. 2019 Sep 1; 36 (5): 349-357.

    PurposeWe aimed to determine which early EEG features and feature combinations most accurately predicted short-term neurobehavioral outcomes and survival in children resuscitated after cardiac arrest.MethodsThis was a prospective, single-center observational study of infants and children resuscitated from cardiac arrest who underwent conventional EEG monitoring with standardized EEG scoring. Logistic regression evaluated the marginal effect of each EEG variable or EEG variable combinations on the outcome. The primary outcome was neurobehavioral outcome (Pediatric Cerebral Performance Category score), and the secondary outcome was mortality. The authors identified the models with the highest areas under the receiver operating characteristic curve (AUC), evaluated the optimal models using a 5-fold cross-validation approach, and calculated test characteristics maximizing specificity.ResultsEighty-nine infants and children were evaluated. Unfavorable neurologic outcome (Pediatric Cerebral Performance Category score 4-6) occurred in 44 subjects (49%), including mortality in 30 subjects (34%). A model incorporating a four-level EEG Background Category (normal, slow-disorganized, discontinuous or burst-suppression, or attenuated-flat), stage 2 Sleep Transients (present or absent), and Reactivity-Variability (present or absent) had the highest AUC. Five-fold cross-validation for the optimal model predicting neurologic outcome indicated a mean AUC of 0.75 (range, 0.70-0.81) and for the optimal model predicting mortality indicated a mean AUC of 0.84 (range, 0.76-0.97). The specificity for unfavorable neurologic outcome and mortality were 95% and 97%, respectively. The positive predictive value for unfavorable neurologic outcome and mortality were both 86%.ConclusionsThe specificity of the optimal model using a combination of early EEG features was high for unfavorable neurologic outcome and mortality in critically ill children after cardiac arrest. However, the positive predictive value was only 86% for both outcomes. Therefore, EEG data must be considered in overall clinical context when used for neuroprognostication early after cardiac arrest.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…