• J. Clin. Invest. · May 1978

    Interacting effects of sulfonylureas and glucose on cyclic AMP metabolism and insulin release in pancreatic islets of the rat.

    • V Grill and E Cerasi.
    • J. Clin. Invest. 1978 May 1; 61 (5): 1346-54.

    AbstractThe effects of tolbutamide and glibenclamide on the metabolism of cyclic AMP were investigated in pancreatic islets of the rat. Changes in cyclic AMP were assessed by measuring [(3)H]cyclic AMP after labeling of the islets with [2-(3)H]adenine. In the presence of a nonstimulatory concentration of glucose (3.3 mM), both sulfonylureas caused a rapid increase in islet [(3)H]cyclic AMP, which declined within 5 (tolbutamide) or 10 min (glibenclamide). In the absence of glucose, the glibenclamide effect was shortened, but the initial (1 min) response of [(3)H]-cyclic AMP was unaffected. Glucose could be substituted with d-glyceraldehyde but not pyruvate for prolongation of the glibenclamide response. The effect of glucose withdrawal on the glibenclamide response was reproduced by the addition of d-mannoheptulose to glucose containing media. The [(3)H]cyclic AMP response to glibenclamide was influenced by prior exposure of the islets to glucose, a 30-min preincubation with 27.7 mM glucose, enhancing the response to the sulfonylurea over a subsequent 5-min stimulation period. Sulfonylureas exerted their effects at low but not at high glucose concentrations, i.e., shifted the glucose dose-response curve to the left both for [(3)H]cyclic AMP accumulation and insulin release. On the other hand, increasing concentrations of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, progressively augmented the effects of the drugs. Omission of Ca(++) from the incubation media inhibited both the glucose and the sulfonylurea [(3)H]-cyclic AMP and insulin responses. Epinephrine (1 muM) partially inhibited the [(3)H]cyclic AMP response to both glucose and sulfonylurea, whereas insulin release was completely abolished. It is concluded that the sulfonylurea effects on islet cyclic AMP are intimately related to those of glucose. It is suggested that sulfonylureas exert a major part of their action by facilitating the effect of glucose on the beta-cell adenylate cyclase; the increased cyclic AMP level, in its turn, enhances the secretion rate of insulin.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.