• Liver Transpl. · Oct 2010

    Activation of interleukin-6-induced glycoprotein 130/signal transducer and activator of transcription 3 pathway in mesenchymal stem cells enhances hepatic differentiation, proliferation, and liver regeneration.

    • Shuk Pik Lam, John M Luk, Kwan Man, Kevin T P Ng, Cindy K Cheung, Stefan Rose-John, and Chung Mau Lo.
    • Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China.
    • Liver Transpl. 2010 Oct 1; 16 (10): 1195-206.

    AbstractAdult bone marrow-derived mesenchymal stem cells (MSCs) exist in all living species and are capable of differentiating into different types of specific cells. In this study, we demonstrate the therapeutic effectiveness of rat MSC transplantation in D-galactosamine (GalN)-induced acute liver injury and identified the novel pathways which are involved in hepatic differentiation of MSCs. In vivo, intraportal transplantation with 5 × 10(6) MSCs at 24 hours after GalN administration resulted in significant reduction in serum levels of alanine aminotransferase, aspartate aminotransferase, and total bilirubin compared to the control group. Engrafted MSCs actively proliferated, differentiated, and further enhanced hepatocyte proliferation activity. In vitro, coculture of MSCs with GalN-induced injured hepatocytes showed efficient differentiation and was evidenced by progressive increase in messenger RNA levels of hepatic markers, including albumin, α-fetoprotein, CCAAT-enhancer binding protein α, α-1-antitryspin, and hepatocyte nuclear factor-3β. Immunofluorescent staining revealed that these cells were positive for albumin, α-fetoprotein, and cytokeratin 18, but not clusters of differentiation 34, cytokeratin 19, or OV6. During hepatic differentiation, signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling were constantly activated, and a gradual down-regulation of β-catenin expression in messenger RNA and protein levels was detected. Hyper-interleukin-6 fusion protein but not interleukin-6 (IL-6) alone caused reduction in β-catenin expression associated with the up-regulation of Wnt-5a in MSCs via activating the glycoprotein 130 (gp130)-mediated STAT3 signaling pathway, which indicates the operation of the trans-signaling mechanism. Activation of IL-6/gp130-mediated STAT3 signaling pathway in MSCs triggered wound healing, cell migration, and proliferation. In conclusion, transplantation of MSCs promotes cell proliferation and organ repair, and activation of IL-6/gp130-mediated STAT3 signaling pathway via soluble IL-6 receptor is crucial in hepatic differentiation of MSCs.© 2010 AASLD.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.