-
- Hannah Moir, Michael G Hughes, Stephen Potter, Craig Sims, Lee R Butcher, Nia A Davies, Kenneth Verheggen, Kenneth P Jones, Andrew W Thomas, and Richard Webb.
- Cardiff School of Health Sciences, University of Wales Institute, Cardiff CF5 2YB, UK.
- J. Appl. Physiol. 2010 May 1; 108 (5): 1284-92.
AbstractWe previously proposed 5'-AMP-activated protein kinase (AMPK) dephosphorylation within immune cells as an intracellular mechanism linking exercise and immunosuppression. In this study, AMPK phosphorylation underwent transient (<1 h) decreases (53.8+/-7.2% basal) immediately after exercise (45 min of cycling at 70% VO2max) in a cohort of 16 adult male participants. Similar effects were seen with running. However, because exercise-induced inactivation of AMPK was previously shown to occur in an AMP-independent manner, the means by which AMPK is inactivated in this context is not yet clear. To investigate the hypothesis that exercise-induced inactivation of AMPK is mediated via signaling mechanisms distinct from changes in cellular AMP-to-ATP ratios, reactive oxygen species (ROS) and intracellular Ca2+ signaling were investigated in mononuclear cells before and after exercise and in cultured monocytic MM6 cells. In in vitro studies, treatment with an antioxidant (ascorbic acid, 4 h, 50 microM) decreased MM6 cell intracellular ROS levels (88.0+/-5.2% basal) and induced dephosphorylation of AMPK (44.7+/-17.6% basal). By analogy, the fact that exercise decreased mononuclear cell ROS content (32.8+/-16.6% basal), possibly due to downregulation (43.4+/-8.0% basal) of mRNA for NOX2, the catalytic subunit of the cytoplasmic ROS-generating enzyme NADPH oxidase, may provide an explanation for the AMPK-dephosphorylating effect of exercise. In contrast, exercise-induced Ca2+ signaling events did not seem to be coupled to changes in AMPK activity. Thus we propose that the exercise-induced decreases in both intracellular ROS and AMPK phosphorylation seen in this study constitute evidence supporting a role for ROS in controlling AMPK, and hence immune function, in the context of exercise-induced immunosuppression.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.