• J. Thorac. Cardiovasc. Surg. · Apr 2022

    Predicting benign, preinvasive, and invasive lung nodules on computed tomography scans using machine learning.

    • Syed Faaz Ashraf, Ke Yin, Cindy X Meng, Qi Wang, Qiong Wang, Jiantao Pu, and Rajeev Dhupar.
    • Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa.
    • J. Thorac. Cardiovasc. Surg. 2022 Apr 1; 163 (4): 1496-1505.e10.

    ObjectiveThe study objective was to investigate if machine learning algorithms can predict whether a lung nodule is benign, adenocarcinoma, or its preinvasive subtype from computed tomography images alone.MethodsA dataset of chest computed tomography scans containing lung nodules was collected with their pathologic diagnosis from several sources. The dataset was split randomly into training (70%), internal validation (15%), and independent test sets (15%) at the patient level. Two machine learning algorithms were developed, trained, and validated. The first algorithm used the support vector machine model, and the second used deep learning technology: a convolutional neural network. Receiver operating characteristic analysis was used to evaluate the performance of the classification on the test dataset.ResultsThe support vector machine/convolutional neural network-based models classified nodules into 6 categories resulting in an area under the curve of 0.59/0.65 when differentiating atypical adenomatous hyperplasia versus adenocarcinoma in situ, 0.87/0.86 with minimally invasive adenocarcinoma versus invasive adenocarcinoma, 0.76/0.72 atypical adenomatous hyperplasia + adenocarcinoma in situ versus minimally invasive adenocarcinoma, 0.89/0.87 atypical adenomatous hyperplasia + adenocarcinoma in situ versus minimally invasive adenocarcinoma + invasive adenocarcinoma, and 0.93/0.92 atypical adenomatous hyperplasia + adenocarcinoma in situ + minimally invasive adenocarcinoma versus invasive adenocarcinoma. Classifying benign versus atypical adenomatous hyperplasia + adenocarcinoma in situ + minimally invasive adenocarcinoma versus invasive adenocarcinoma resulted in a micro-average area under the curve of 0.93/0.94 for the support vector machine/convolutional neural network models, respectively. The convolutional neural network-based methods had higher sensitivities than the support vector machine-based methods but lower specificities and accuracies.ConclusionsThe machine learning algorithms demonstrated reasonable performance in differentiating benign versus preinvasive versus invasive adenocarcinoma from computed tomography images alone. However, the prediction accuracy varies across its subtypes. This holds the potential for improved diagnostic capabilities with less-invasive means.Published by Elsevier Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.