• Radiology · Oct 2013

    Controlled Clinical Trial

    Split-bolus spectral multidetector CT of the pancreas: assessment of radiation dose and tumor conspicuity.

    • Olga R Brook, Sofia Gourtsoyianni, Alexander Brook, Bettina Siewert, Tara Kent, and Vassilios Raptopoulos.
    • Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215.
    • Radiology. 2013 Oct 1; 269 (1): 139-48.

    PurposeTo assess tumor conspicuity and radiation dose with a new multidetector computed tomography (CT) protocol for pancreatic imaging that combines spectral CT and split-bolus injection.Materials And MethodsThis study was approved by the institutional review board and compliant with HIPAA. The requirement for informed consent was waived. One hundred sixty-three consecutive patients referred for possible pancreatic mass underwent CT with either a standard or split-bolus spectral CT protocol depending on scanner availability. Split-bolus spectral CT (CT unit with spectral imaging) combines pancreatic and portal venous phases in a single scan: 70 seconds before CT, 100 mL of contrast material is injected for the portal venous phase followed approximately 35 seconds later by injection of 40 mL of contrast material to boost the pancreatic phase. Bolus tracking after the second bolus initiates scanning 15 seconds after aorta enhancement reaches 280 HU. Images were reconstructed at 60 and 77 keV. The standard protocol (64-detector row unit) included unenhanced and pancreatic and portal venous phase imaging, with a single contrast material injection timed with bolus tracking 15 seconds after aortic enhancement of 300 HU for the pancreatic phase and 32 seconds later for the portal venous phase. Tumor conspicuity (difference in attenuation between tumor and pancreatic parenchyma) and contrast-to-noise ratio (CNR) were determined. Attenuation of aorta, main portal vein, and liver were measured. Patient size and per-examination radiation dose were recorded. The heteroscedastic t test, Fisher exact test, and Mann-Whitney test were used for statistical analysis.ResultsThere were no significant differences in age, weight, and body mass index between patients in the standard CT (46 of 80 patients had lesions) and split-bolus spectral CT (39 of 83 patients had lesions) groups; however, there were significantly more women in the split-bolus group (P = .02). Tumor conspicuity and CNR were higher with the 60-keV split-bolus protocol (89.1 HU ± 56.6 and 8.8 ± 6.2, respectively) than with the pancreatic or portal venous phase of the standard protocol (43.5 HU ± 28.4 and 4.5 ± 3.0, and 51.5 HU ± 30.3 and 5.6 ± 4.0, respectively; P < .01 for all comparisons). Dose-length product was 1112 mGy · cm ± 437 with the standard protocol and 633 mGy · cm ± 105 with the split-bolus protocol (P < .001).ConclusionSplit-bolus spectral multidetector CT resulted in vascular, liver, and pancreatic attenuation and tumor conspicuity equal to or greater than that with multiphase CT, with a 43% reduction in radiation dose.© RSNA, 2013.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…