• Immunology · Jun 2018

    Review

    Impacts of microbiome metabolites on immune regulation and autoimmunity.

    • Stefanie Haase, Aiden Haghikia, Nicola Wilck, Dominik N Müller, and Ralf A Linker.
    • Department of Neurology, Friedrich-Alexander University, Erlangen, Germany.
    • Immunology. 2018 Jun 1; 154 (2): 230-238.

    AbstractA vast number of studies have demonstrated a remarkable role for the gut microbiota and their metabolites in the pathogenesis of inflammatory diseases, including multiple sclerosis (MS). Recent studies in experimental autoimmune encephalomyelitis, an animal model of MS, have revealed that modifying certain intestinal bacterial populations may influence immune cell priming in the periphery, resulting in dysregulation of immune responses and neuroinflammatory processes in the central nervous system (CNS). Conversely, some commensal bacteria and their antigenic products can protect against inflammation within the CNS. Specific components of the gut microbiome have been implicated in the production of pro-inflammatory cytokines and subsequent generation of Th17 cells. Similarly, commensal bacteria and their metabolites can also promote the generation of regulatory T-cells (Treg), contributing to immune suppression. Short-chain fatty acids may induce Treg either by G-protein-coupled receptors or inhibition of histone deacetylases. Tryptophan metabolites may suppress inflammatory responses by acting on the aryl hydrocarbon receptor in T-cells or astrocytes. Interestingly, secretion of these metabolites can be impaired by excess consumption of dietary components, such as long-chain fatty acids or salt, indicating that the diet represents an environmental factor affecting the complex crosstalk between the gut microbiota and the immune system. This review discusses new aspects of host-microbiota interaction and the immune system with a special focus on MS as a prototype T-cell-mediated autoimmune disease of the CNS.© 2018 John Wiley & Sons Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.