• Spine · Feb 2014

    Annular repair using high-density collagen gel: a rat-tail in vivo model.

    • Peter Grunert, Brandon H Borde, Katherine D Hudson, Michael R Macielak, Lawrence J Bonassar, and Roger Härtl.
    • *Department of Neurological Surgery, Weill Cornell Brain and Spine Institute, Weill Cornell Medical College, New York, NY; †Department of Biomedical Engineering, Cornell University, Ithaca, NY; and ‡Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY.
    • Spine. 2014 Feb 1; 39 (3): 198-206.

    Study DesignAnimal in vivo study.ObjectiveTo test the capability of high-density collagen gel to repair annular defects.Summary Of Background DataAnnular defects are associated with spontaneous disc herniations and disc degeneration, which can lead to significant morbidity. Persistent annular defects after surgical discectomies can increase reherniation rates. Several synthetic and biological materials have been developed for annular repair. This is the first study to test an injectable biomaterial in vivo.MethodsWe punctured caudal intervertebral discs in 42 athymic rats, using an 18-gauge needle to create an annular defect. High-density collagen (HDC), either alone or cross-linked with riboflavin (RF), was injected into the defect. There were 4 separate study groups: HDC, HDC cross-linked with either 0.25 mM RF or 0.50 mM RF, and a negative control that was punctured and not treated. The animals were followed for 5 weeks; radiographs were used to assess disc heights and magnetic resonance images were used to evaluate degenerative changes. We developed an algorithm on the basis of T2-relaxation time measurements to assess the size of the nucleus pulposus. Tails were collected for histological analysis to evaluate disc degeneration and measure the cross-sectional area of the nucleus pulposus.ResultsAfter 5 weeks, the control and the uncross-linked HDC groups both showed signs of progressive degenerative changes with minimal or no residual nucleus pulposus tissue in the disc space. Cross-linking significantly improved the ability of HDC gels to repair annular defects. The 0.50 mM RF cross-linked group showed only a slight decrease in nuclear tissue when compared with healthy discs, with no signs of intervertebral disc (IVD) degeneration. The annulus fibrosus was partially repaired by a fibrous cap that bridged the defect. Host fibroblasts infiltrated and remodeled the injected collagen.ConclusionHDC is capable of repairing annular defects induced by needle puncture. The stiffness of HDC can be modified by riboflavin cross-linking and seems to positively affect the repair mechanism. These results need to be replicated in a larger animal model.Level Of EvidenceN/A.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.