-
- Yong-Yeon Jo, Younghoon Cho, Soo Youn Lee, Joon-Myoung Kwon, Kyung-Hee Kim, Ki-Hyun Jeon, Soohyun Cho, Jinsik Park, and Byung-Hee Oh.
- Medical research team, Medical AI, Seoul, South Korea.
- Int. J. Cardiol. 2021 Apr 1; 328: 104-110.
IntroductionEarly detection and intervention of atrial fibrillation (AF) is a cornerstone for effective treatment and prevention of mortality. Diverse deep learning models (DLMs) have been developed, but they could not be applied in clinical practice owing to their lack of interpretability. We developed an explainable DLM to detect AF using ECG and validated its performance using diverse formats of ECG.MethodsWe conducted a retrospective study. The Sejong ECG dataset comprising 128,399 ECGs was used to develop and internally validated the explainable DLM. DLM was developed with two feature modules, which could describe the reason for DLM decisions. DLM was external validated using data from 21,837, 10,605, and 8528 ECGs from PTB-XL, Chapman, and PhysioNet non-restricted datasets, respectively. The predictor variables were digitally stored ECGs, and the endpoints were AFs.ResultsDuring internal and external validation of the DLM, the area under the receiver operating characteristic curves (AUCs) of the DLM using a 12‑lead ECG in detecting AF were 0.997-0.999. The AUCs of the DLM with VAE using a 6‑lead and single‑lead ECG were 0.990-0.999. The AUCs of explainability about features such as rhythm irregularity and absence of P-wave were 0.961-0.993 and 0.983-0.993, respectively.ConclusionsOur DLM successfully detected AF using diverse ECGs and described the reason for this decision. The results indicated that an explainable artificial intelligence methodology could be adopted to the DLM using ECG and enhance the transparency of the DLM for its application in clinical practice.Copyright © 2020 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.