• J Aerosol Med Pulm Drug Deliv · Jun 2017

    Comparative Study

    Aerosol Drug Delivery During Noninvasive Positive Pressure Ventilation: Effects of Intersubject Variability and Excipient Enhanced Growth.

    • Ross L Walenga, P Worth Longest, Anubhav Kaviratna, and Michael Hindle.
    • 1 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University , Richmond, Virginia.
    • J Aerosol Med Pulm Drug Deliv. 2017 Jun 1; 30 (3): 190-205.

    BackgroundNebulized aerosol drug delivery during the administration of noninvasive positive pressure ventilation (NPPV) is commonly implemented. While studies have shown improved patient outcomes for this therapeutic approach, aerosol delivery efficiency is reported to be low with high variability in lung-deposited dose. Excipient enhanced growth (EEG) aerosol delivery is a newly proposed technique that may improve drug delivery efficiency and reduce intersubject aerosol delivery variability when coupled with NPPV.Materials And MethodsA combined approach using in vitro experiments and computational fluid dynamics (CFD) was used to characterize aerosol delivery efficiency during NPPV in two new nasal cavity models that include face mask interfaces. Mesh nebulizer and in-line dry powder inhaler (DPI) sources of conventional and EEG aerosols were both considered.ResultsBased on validated steady-state CFD predictions, EEG aerosol delivery improved lung penetration fraction (PF) values by factors ranging from 1.3 to 6.4 compared with conventional-sized aerosols. Furthermore, intersubject variability in lung PF was very high for conventional aerosol sizes (relative differences between subjects in the range of 54.5%-134.3%) and was reduced by an order of magnitude with the EEG approach (relative differences between subjects in the range of 5.5%-17.4%). Realistic in vitro experiments of cyclic NPPV demonstrated similar trends in lung delivery to those observed with the steady-state simulations, but with lower lung delivery efficiencies. Reaching the lung delivery efficiencies reported with the steady-state simulations of 80%-90% will require synchronization of aerosol administration during inspiration and reducing the size of the EEG aerosol delivery unit.ConclusionsThe EEG approach enabled high-efficiency lung delivery of aerosols administered during NPPV and reduced intersubject aerosol delivery variability by an order of magnitude. Use of an in-line DPI device that connects to the NPPV mask appears to be a convenient method to rapidly administer an EEG aerosol and synchronize the delivery with inspiration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…