-
- X Wang, T Henzler, J Gawlitza, S Diehl, T Wilhelm, S O Schoenberg, Z Y Jin, H D Xue, and A Smakic.
- Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Eur J Radiol. 2016 Nov 1; 85 (11): 2104-2110.
PurposeDynamic volume perfusion CT (dVPCT) provides valuable information on tissue perfusion in patients with hepatocellular carcinoma (HCC) and pancreatic cancer. However, currently dVPCT is often performed in addition to conventional CT acquisitions due to the limited morphologic image quality of dose optimized dVPCT protocols. The aim of this study was to prospectively compare objective and subjective image quality, lesion detectability and radiation dose between mean temporal arterial (mTA) and mean temporal portal venous (mTPV) images calculated from low dose dynamic volume perfusion CT (dVPCT) datasets with linearly blended 120-kVp arterial and portal venous datasets in patients with HCC and pancreatic cancer.Materials And MethodsAll patients gave written informed consent for this institutional review board-approved HIPAA compliant study. 27 consecutive patients (18 men, 9 women, mean age, 69.1 years±9.4) with histologically proven HCC or suspected pancreatic cancer were prospectively enrolled. The study CT protocol included a dVPCT protocol performed with 70 or 80kVp tube voltage (18 spiral acquisitions, 71.2s total acquisition times) and standard dual-energy (90/150kVpSn) arterial and portal venous acquisition performed 25min after the dVPCT. The mTA and mTPV images were manually reconstructed from the 3 to 5 best visually selected single arterial and 3 to 5 best single portal venous phases dVPCT dataset. The linearly blended 120-kVp images were calculated from dual-energy CT (DECT) raw data. Image noise, SNR, and CNR of the liver, abdominal aorta (AA) and main portal vein (PV) were compared between the mTA/mTPV and the linearly blended 120-kVp dual-energy arterial and portal venous datasets, respectively. Subjective image quality was evaluated by two radiologists regarding subjective image noise, sharpness and overall diagnostic image quality using a 5-point Likert Scale. In addition, liver lesion detectability was performed for each liver segment by the two radiologists using the linearly blended120-kVp arterial and portal venous datasets as the reference standard.ResultsImage noise, SNR and CNR values of the mTA and mTPV were significantly higher when compared to the corresponding linearly blended arterial and portal venous 120-kVp datasets (all p<0.001) except for image noise within the PV in the portal venous phases (p=0.136).Objectiveimage quality of mTA and mTPV were rated significantly better when compared to the linearly blended 120-kVp arterial and portal venous datasets. Both readers were able to detect all liver lesions found on the linearly blended 120-kVp arterial and portal venous datasets using the mTA and mTPV datasets. The effective radiation dose of the dVPCT was 27.6mSv for the 80kVp protocol and 14.5mSv for the 70kVp protocol. The mean effective radiation dose for the linearly blended 120-kVp arterial and portal venous CT protocol together of the upper abdomen was 5.60mSv±1.48mSv.ConclusionOur preliminary data suggest that subjective and objective image quality of mTA and mTPV datasets calculated from low-kVp dVPCT datasets is non-inferior when compared to linearly blended 120-kVp arterial and portal venous acquisitions in patients with HCC and pancreatic cancer. Thus, dVPCT could be used as a stand-alone imaging technique without additionally performed conventional arterial and portal venous CT acquisitions.Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.