• J Cardiovasc Comput Tomogr · May 2017

    Randomized Controlled Trial Comparative Study

    Improved image quality with simultaneously reduced radiation exposure: Knowledge-based iterative model reconstruction algorithms for coronary CT angiography in a clinical setting.

    • Florian André, Philipp Fortner, Mani Vembar, Dirk Mueller, Wolfram Stiller, Sebastian J Buss, Hans-Ulrich Kauczor, Hugo A Katus, and Grigorios Korosoglou.
    • University of Heidelberg, Department of Cardiology, Angiology and Pneumology, Im Neuenheimer Feld 410, Heidelberg, 69120, Germany. Electronic address: florian.andre@med.uni-heidelberg.de.
    • J Cardiovasc Comput Tomogr. 2017 May 1; 11 (3): 213-220.

    BackgroundThe aim of this study was to assess the potential for radiation dose reduction using knowledge-based iterative model reconstruction (K-IMR) algorithms in combination with ultra-low dose body mass index (BMI)-adapted protocols in coronary CT angiography (coronary CTA).MethodsForty patients undergoing clinically indicated coronary CTA were randomly assigned to two groups with BMI-adapted (I: <25.0 kg/m2, II: <28.0 kg/m2, III: <30.0 kg/m2, IV: ≥30.0 kg/m2) low dose (LD, I: 100kVp/75 mAs, II: 100kVp/100 mAs, III: 100kVp/150 mAs, IV: 120kVp/150 mAs, n = 20) or ultra-low dose (ULD, I: 100kVp/50 mAs, II: 100kVp/75 mAs, III: 100kVp/100 mAs, IV: 120kVp/100 mAs, n = 20) protocols. Prospectively-triggered coronary CTA was performed using a 256-MDCT with the lowest reasonable scan length. Images were generated with filtered back projection (FBP), a noise-reducing hybrid iterative algorithm (iD, levels 2/5) and K-IMR using cardiac routine (CR) and cardiac sharp settings, levels 1-3.ResultsGroups were comparable regarding anthropometric parameters, heart rate, and scan length. The use of ULD protocols resulted in a significant reduction of radiation exposure (0.7 (0.6-0.9) mSv vs. 1.1 (0.9-1.7) mSv; p < 0.02). Image quality was significantly better in the ULD group using K-IMR CR 1 compared to FBP, iD 2 and iD 5 in the LD group, resulting in fewer non-diagnostic coronary segments (2.4% vs. 11.6%, 9.2% and 6.1%; p < 0.05).ConclusionsThe combination of K-IMR with BMI-adapted ULD protocols results in significant radiation dose savings while simultaneously improving image quality compared to LD protocols with FBP or hybrid iterative algorithms. Therefore, K-IMR allows for coronary CTA examinations with high diagnostic value and very low radiation exposure in clinical routine.Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.