• J. Neurosci. Res. · Apr 2019

    Altered brain iron content and deposition rate in Huntington's disease as indicated by quantitative susceptibility MRI.

    • Lin Chen, Jun Hua, Christopher A Ross, Shuhui Cai, van Zijl Peter C M PCM F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland. , and Xu Li.
    • Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
    • J. Neurosci. Res. 2019 Apr 1; 97 (4): 467-479.

    AbstractAltered brain iron content in the striatum of premanifest and manifest Huntington's disease (HD) has been reported. However, its natural history remains unclear. This study aims to investigate altered brain iron content in premanifest and early HD, and the iron deposition rate in these patients through a longitudinal one-year follow-up test, with quantitative magnetic susceptibility as an iron imaging marker. Twenty-four gene mutation carriers divided into three groups (further-from-onset, closer-to-onset and early HD) and 16 age-matched healthy controls were recruited at baseline, and of these, 14 carriers and 7 controls completed the one-year follow-up. Quantitative magnetic susceptibility and effective transverse relaxation rate ( R 2 ∗ ) were measured at 7.0 Tesla and correlated with atrophy and available clinical and cognitive measurements. Higher susceptibility values indicating higher iron content in the striatum and globus pallidus were only observed in closer-to-onset (N = 6, p < 0.05 in caudate and p < 0.01 in putamen) and early HD (N = 9, p < 0.05 in caudate and globus pallidus and p < 0.01 in putamen). Similar results were found by R 2 ∗ measurement. Such increases directly correlated with HD CAG-age product score and brain atrophy, but not with motor or cognitive scores. More importantly, a significantly higher iron deposition rate (11.9%/years in caudate and 6.1%/years in globus pallidus) was firstly observed in closer-to-onset premanifest HD and early HD as compared to the controls. These results suggest that monitoring brain iron may provide further insights into the pathophysiology of HD disease progression, and may provide a biomarker for clinical trials.© 2018 Wiley Periodicals, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.