-
Review Meta Analysis
Human surrogate models of central sensitization: a critical review and practical guide.
- Charles Quesada, Anna Kostenko, Idy Ho, Caterina Leone, Zahra Nochi, Alexandre Stouffs, Matthias Wittayer, Ombretta Caspani, Brix FinnerupNannaNDanish Pain Research Center, Dept of Clinical Medicine, Aarhus University, Aarhus, Denmark., André Mouraux, Gisèle Pickering, Irene Tracey, Andrea Truini, Rolf-Detlef Treede, and Luis Garcia-Larrea.
- NeuroPain lab, Lyon Centre for Neuroscience Inserm U1028, Lyon, France.
- Eur J Pain. 2021 Aug 1; 25 (7): 1389-1428.
BackgroundAs in other fields of medicine, development of new medications for management of neuropathic pain has been difficult since preclinical rodent models do not necessarily translate to the clinics. Aside from ongoing pain with burning or shock-like qualities, neuropathic pain is often characterized by pain hypersensitivity (hyperalgesia and allodynia), most often towards mechanical stimuli, reflecting sensitization of neural transmission.Data TreatmentWe therefore performed a systematic literature review (PubMed-Medline, Cochrane, WoS, ClinicalTrials) and semi-quantitative meta-analysis of human pain models that aim to induce central sensitization, and generate hyperalgesia surrounding a real or simulated injury.ResultsFrom an initial set of 1569 reports, we identified and analysed 269 studies using more than a dozen human models of sensitization. Five of these models (intradermal or topical capsaicin, low- or high-frequency electrical stimulation, thermode-induced heat-injury) were found to reliably induce secondary hyperalgesia to pinprick and have been implemented in multiple laboratories. The ability of these models to induce dynamic mechanical allodynia was however substantially lower. The proportion of subjects who developed hypersensitivity was rarely provided, giving rise to significant reporting bias. In four of these models pharmacological profiles allowed to verify similarity to some clinical conditions, and therefore may inform basic research for new drug development.ConclusionsWhile there is no single "optimal" model of central sensitization, the range of validated and easy-to-use procedures in humans should be able to inform preclinical researchers on helpful potential biomarkers, thereby narrowing the translation gap between basic and clinical data.SignificanceBeing able to mimic aspects of pathological pain directly in humans has a huge potential to understand pathophysiology and provide animal research with translatable biomarkers for drug development. One group of human surrogate models has proven to have excellent predictive validity: they respond to clinically active medications and do not respond to clinically inactive medications, including some that worked in animals but failed in the clinics. They should therefore inform basic research for new drug development.© 2021 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.