• Magn Reson Med · Feb 2019

    Imperfect magnetic field gradients in radial k-space encoding-Quantification, correction, and parameter dependency.

    • Amir Moussavi and Susann Boretius.
    • Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
    • Magn Reson Med. 2019 Feb 1; 81 (2): 962-975.

    PurposeSensitivity to imperfections of image-encoding gradient fields may significantly impair widespread use of radial MR data acquisition. Such imperfections can cause individual echo shifts for each spoke acquired in the k-space and may produce severe image artifacts. Therefore, fast and robust methods to quantify and correct for those echo shifts are required.Theory And MethodsEcho shifts can be induced by inhomogeneities of the static magnetic field (δnB ) and by imbalances of the imaging gradients (δnG ) mainly caused by eddy currents. However, mismatch between data acquisition and gradient switching may additionally play a role. From the position of the echo maxima of 2 opposing spokes, δnG and δnB can be determined and corrected by adapting the read-dephasing gradient accordantly. This approach was implemented on MR-systems of different field strengths, gradient systems, and vendors, and the dependencies of echo shift and acquisition parameters were analyzed. Data sets of phantoms and of mice under in vivo conditions were obtained using RF-spoiled 2D radial-FLASH.ResultsThe presented method allowed for echo-shift detection and correction of < 1 data point, significantly improving the image quality in vitro and in vivo. Moreover, the method separated the effect of imbalanced gradients from those of magnetic inhomogeneities. The observed echo shifts were MR system-specifically dependent on acquisition parameters such as gradient strengths and dwell time.ConclusionsBy acquiring 12 spokes for a certain set of acquisition parameters, the proposed method successfully corrects echo shift-related image artifacts independently of the MR system.© 2018 International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.