• J Wound Ostomy Continence Nurs · Sep 2011

    Comparative Study

    pH in the bacteria-contaminated wound and its impact on clostridium histolyticum collagenase activity: implications for the use of collagenase wound debridement agents.

    • Lei Shi, Sarah Ramsay, Ryan Ermis, and Dennis Carson.
    • Research & Development, Healthpoint Biotherapeutics, Fort Worth, Texas, USA. lei.shi@healthpoint.com
    • J Wound Ostomy Continence Nurs. 2011 Sep 1; 38 (5): 514-21.

    PurposeWe sought to understand the influence of pH on Clostridium collagenase activity, using both in vitro and in vivo, and to understand the influence of bacterial contamination on pH in vivo.DesignArtificial wound eschar was used for the assessment of debridement efficacy in vitro and the wound fluid of a contaminated pig wound model was used for examining pH during healing using in vivo techniques.MethodsWe used a collagen-based artificial wound eschar to test collagenase activity in the collagenase product under various pH conditions. We evaluated bacterial contaminated wounds, using a pig wound model with a bacterial load including Pseudomonas aeruginosa, coagulase-negative staphylococci, and Fusobacterium sp to track the pH of wounds in relation to bacterial load.ResultsThe pH levels in the wound fluid were all above neutral. They varied from 9.2 on day 1 to 8.3 on day 10. Collagenase achieved its highest activity around a pH of 8.5 when tested in Tris-buffered saline. Using artificial wound eschar, the optimal pH range for C collagenase was determined to be more than a pH of 6. The total initial microbial load (day 0) was higher than levels at any other time during the study. The levels of P aeruginosa began to decrease on day 1, but by day 4 the total pseudomonas population had rebounded to near day 0 levels. This was followed by a distinct decrease and by day 21 levels were lower than those on day 0. The coagulase negative staphylococci (CNS) population behaved differently than the pseudomonas population, decreasing and remaining decreased relative to day 0 through day 14. However, by day 21 the CNS population had increased to near day 0 levels. This greatly influenced the increase in total bioburden by day 21, indicating that it was primarily due to the increase in CNS.ConclusionThe data demonstrate that wound pH in a model of contaminated pig wounds is alkaline during the first 10 days of healing. As healing progresses, pH decreases with no significant change in the level of bacterial bioburden. C collagenase exhibited robust activity in the pH range found in this contaminated pig wound model, suggesting it can effectively debride necrotic tissue in the environment found in most chronic wounds in humans.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…