• Cochrane Db Syst Rev · Mar 2021

    Review Meta Analysis

    Pharmacological and non-pharmacological strategies for obese women with subfertility.

    • Seyed Abdolvahab Taghavi, Madelon van Wely, Shayesteh Jahanfar, and Fatemeh Bazarganipour.
    • Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
    • Cochrane Db Syst Rev. 2021 Mar 25; 3 (3): CD012650CD012650.

    BackgroundClinicians primarily recommend weight loss for obese women seeking pregnancy. The effectiveness of interventions aimed at weight loss in obese women with subfertility is unclear.ObjectivesTo assess the effectiveness and safety of pharmacological and non-pharmacological strategies compared with each other, placebo, or no treatment for achieving weight loss in obese women with subfertility.Search MethodsWe searched the CGF Specialised Register, CENTRAL, MEDLINE, Embase, PsycINFO, and AMED from inception to 18 August 2020. We also checked reference lists and contacted experts in the field for additional relevant papers.Selection CriteriaWe included published and unpublished randomised controlled trials in which weight loss was the main goal of the intervention. Our primary effectiveness outcomes were live birth or ongoing pregnancy and primary safety outcomes were miscarriage and adverse events. Secondary outcomes included clinical pregnancy, weight change, quality of life, and mental health outcome.Data Collection And AnalysisReview authors followed standard Cochrane methodology.Main ResultsThis review includes 10 trials. Evidence was of very low to low quality: the main limitations were due to lack of studies and poor reporting of study methods. The main reasons for downgrading evidence were lack of details by which to judge risk of bias (randomisation and allocation concealment), lack of blinding, and imprecision. Non-pharmacological intervention versus no intervention or placebo Evidence is insufficient to determine whether a diet or lifestyle intervention compared to no intervention affects live birth (odds ratio (OR) 0.85, 95% confidence interval (CI) 0.65 to 1.11; 918 women, 3 studies; I² = 78%; low-quality evidence). This suggests that if the chance of live birth following no intervention is assumed to be 43%, the chance following diet or lifestyle changes would be 33% to 46%. We are uncertain if lifestyle change compared with no intervention affects miscarriage rate (OR 1.54, 95% CI 0.99 to 2.39; 917 women, 3 studies; I² = 0%; very low-quality evidence). Evidence is insufficient to determine whether lifestyle change compared with no intervention affects clinical pregnancy (OR 1.06, 95% CI 0.81 to 1.40; 917 women, 3 studies; I² = 73%; low-quality evidence). Lifestyle intervention resulted in a decrease in body mass index (BMI), but data were not pooled due to heterogeneity in effect (mean difference (MD) -3.70, 95% CI -4.10 to -3.30; 305 women, 1 study; low-quality evidence; and MD -1.80, 95% CI -2.67 to -0.93; 43 women, 1 study; very low-quality evidence). Non-pharmacological versus non-pharmacological intervention We are uncertain whether intensive weight loss interventions compared to standard care nutrition counselling affects live birth (OR 11.00, 95% CI 0.43 to 284; 11 women, 1 study; very low-quality evidence), clinical pregnancy (OR 11.00, 95% CI 0.43 to 284; 11 women, 1 study; very low-quality evidence), BMI (MD -3.00, 95% CI -5.37 to -0.63; 11 women, 1 study; very low-quality evidence), weight change (MD -9.00, 95% CI -15.50 to -2.50; 11 women, 1 study; very low-quality evidence), quality of life (MD 0.06, 95% CI -0.03 to 0.15; 11 women, 1 study; very low-quality evidence), or mental health (MD -7.00, 95% CI -13.92 to -0.08; 11 women, 1 study; very low-quality evidence). No study reported on adverse events . Pharmacological versus pharmacological intervention For metformin plus liraglutide compared to metformin we are uncertain of an effect on the adverse events nausea (OR 7.22, 95% CI 0.72 to 72.7; 28 women, 1 study; very low-quality evidence), diarrhoea (OR 0.31, 95% CI 0.01 to 8.3; 28 women, 1 study; very low-quality evidence), and headache (OR 5.80, 95% CI 0.25 to 133; 28 women, 1 study; very low-quality evidence). We are uncertain if a combination of metformin plus liraglutide vs metformin affects BMI (MD 2.1, 95% CI -0.42 to 2.62; 28 women, 1 study; very low-quality evidence) and total body fat (MD -0.50, 95% CI -4.65 to 3.65; 28 women, 1 study; very low-quality evidence). For metformin, clomiphene, and L-carnitine versus metformin, clomiphene, and placebo, we are uncertain of an effect on miscarriage (OR 3.58, 95% CI 0.73 to 17.55; 274 women, 1 study; very low-quality evidence), clinical pregnancy (OR 5.56, 95% CI 2.57 to 12.02; 274 women, 1 study; very low-quality evidence) or BMI (MD -0.3, 95% CI 1.17 to 0.57, 274 women, 1 study, very low-quality evidence). We are uncertain if dexfenfluramine versus placebo affects weight loss in kilograms (MD -0.10, 95% CI -2.77 to 2.57; 21 women, 1 study; very low-quality evidence). No study reported on live birth, quality of life, or mental health outcomes. Pharmacological intervention versus no intervention or placebo We are uncertain if metformin compared with placebo affects live birth (OR 1.57, 95% CI 0.44 to 5.57; 65 women, 1 study; very low-quality evidence). This suggests that if the chance of live birth following placebo is assumed to be 15%, the chance following metformin would be 7% to 50%. We are uncertain if metformin compared with placebo affects gastrointestinal adverse events (OR 0.91, 95% CI 0.32 to 2.57; 65 women, 1 study; very low-quality evidence) or miscarriage (OR 0.50, 95% CI 0.04 to 5.80; 65 women, 1 study; very low-quality evidence) or clinical pregnancy (OR 2.67, 95% CI 0.90 to 7.93; 96 women, 2 studies; I² = 48%; very low-quality evidence). We are also uncertain if diet combined with metformin versus diet and placebo affects BMI (MD -0.30, 95% CI -2.16 to 1.56; 143 women, 1 study; very low-quality evidence) or waist-to-hip ratio (WHR) (MD 2.00, 95% CI -2.21 to 6.21; 143 women, 1 study; very low-quality evidence). Pharmacological versus non-pharmacological intervention No study undertook this comparison.Authors' ConclusionsEvidence is insufficient to support the use of pharmacological and non-pharmacological strategies for obese women with subfertility. No data are available for the comparison of pharmacological versus non-pharmacological strategies. We are uncertain whether pharmacological or non-pharmacological strategies effect live birth, ongoing pregnancy, adverse events, clinical pregnancy, quality of life, or mental heath outcomes. However, for obese women with subfertility, a lifestyle intervention may reduce BMI. Future studies should compare a combination of pharmacological and lifestyle interventions for obese women with subfertility.Copyright © 2021 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.