• Eur Spine J · Dec 2013

    Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body.

    • Jae-Hyuk Shin, Shaobai Wang, Qi Yao, Kirkham B Wood, and Guoan Li.
    • Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRJ 1215, Boston, MA, 02114, USA.
    • Eur Spine J. 2013 Dec 1;22(12):2671-7.

    PurposeLittle is known about the coupled motions of the spine during functional dynamic motion of the body. This study investigated the in vivo characteristic motion patterns of the human lumbar spine during a dynamic axial rotation of the body. Specifically, the contribution of each motion segment to the lumbar axial rotation and the coupled bending of the vertebrae during the dynamic axial rotation of the body were analyzed.MethodsEight asymptomatic subjects (M/F, 7/1; age, 40-60 years) were recruited. The lumbar segment of each subject was MRI scanned for construction of 3D models of the vertebrae from L2 to S1. The lumbar spine was then imaged using a dual fluoroscopic system while the subject performed a dynamic axial rotation from maximal left to maximal right in a standing position. The 3D vertebral models and the fluoroscopic images were used to reproduce the in vivo vertebral motion. In this study, we analyzed the primary left-right axial rotation, the coupled left-right bending of each vertebral segment from L2 to S1 levels.ResultsThe primary axial rotations of all segments (L2-S1) followed the direction of the body axial rotation. Contributions of each to the overall segment axial rotation were 6.7° ± 3.0° (27.9 %) for the L2-L3, 4.4° ± 1.2° (18.5 %) for the L3-L4, 6.4° ± 2.2° (26.7 %) for the L4-L5, and 6.4° ± 2.6° (27.0 %) for the L5-S1 vertebral motion segments. The upper segments of L2-L3 and L3-L4 demonstrated a coupled contralateral bending towards the opposite direction of the axial rotation, while the lower segments of L4-L5 and L5-S1 demonstrated a coupled ipsilateral bending motion towards the same direction of the axial rotation. Strong correlation between the primary axial rotation and the coupled bending was found at each vertebral level. We did not observe patterns of coupled flexion/extension rotation with the primary axial rotation.ConclusionsThis study demonstrated that a dynamic lumbar axial rotation coupling with lateral bendings is segment-dependent and can create a coordinated dynamic coupling to maintain the global dynamic balance of the body. The results could improve our understanding of the normal physiologic lumbar axial rotation and to establish guidelines for diagnosing pathological lumbar motion.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.