• Pain · Oct 2011

    Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation.

    • Roxanne Y Walder, Mamta Gautam, Steven P Wilson, Christopher J Benson, and Kathleen A Sluka.
    • Physical Therapy and Rehabilitation Sciences Graduate Program, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.
    • Pain. 2011 Oct 1;152(10):2348-56.

    AbstractAcid-sensing ion channels (ASICs) are activated by acidic pH and may play a significant role in the development of hyperalgesia. Earlier studies show ASIC3 is important for induction of hyperalgesia after muscle insult using ASIC3-/- mice. ASIC3-/- mice lack ASIC3 throughout the body, and the distribution and composition of ASICs could be different from wild-type mice. We therefore tested whether knockdown of ASIC3 in primary afferents innervating muscle of adult wild-type mice prevented development of hyperalgesia to muscle inflammation. We cloned and characterized artificial miRNAs (miR-ASIC3) directed against mouse ASIC3 (mASIC3) to downregulate ASIC3 expression in vitro and in vivo. In CHO-K1 cells transfected with mASIC3 cDNA in culture, the miR-ASIC3 constructs inhibited protein expression of mASIC3 and acidic pH-evoked currents and had no effect on protein expression or acidic pH-evoked currents of ASIC1a. When miR-ASIC3 was used in vivo, delivered into the muscle of mice using a herpes simplex viral vector, both muscle and paw mechanical hyperalgesia were reduced after carrageenan-induced muscle inflammation. ASIC3 mRNA in DRG and protein levels in muscle were decreased in vivo by miR-ASIC3. In CHO-K1 cells co-transfected with ASIC1a and ASIC3, miR-ASIC3 reduced the amplitude of acidic pH-evoked currents, suggesting an overall inhibition in the surface expression of heteromeric ASIC3-containing channels. Our results show, for the first time, that reducing ASIC3 in vivo in primary afferent fibers innervating muscle prevents the development of inflammatory hyperalgesia in wild-type mice, and thus, may have applications in the treatment of musculoskeletal pain in humans.Copyright © 2011. Published by Elsevier B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.