-
- George Hadjipavlou, Catherine E Warnaby, James Fitzgerald, and Jamie Sleigh.
- Nuffield Department of Anaesthesia, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, UK. Electronic address: georgehadjipavlou@gmail.com.
- Br J Anaesth. 2021 May 1; 126 (5): 985-995.
BackgroundGeneral anaesthesia is known to enhance inhibitory synaptic transmission to produce characteristic effects on the EEG and reduction in brain metabolism secondary to reduced neuronal activity. Evidence suggests that anaesthesia might have a direct effect on synaptic metabolic processes, and this relates to anaesthesia sensitivity. We explored elements of synaptic transmission looking for possible contributions to the anaesthetised EEG and how it may modulate anaesthesia sensitivity.MethodsWe developed a Hodgkin-Huxley-type neural network computer simulation capable of mimicking anaesthetic prolongation of gamma-aminobutyric acid (GABA)ergic inhibitory postsynaptic potentials (IPSPs), and capable of altering postsynaptic ion homeostasis and neurotransmitter recycling. We examined their interactions on simulated electrocorticography (sECoG), and compared these with published anaesthesia EEG spectra.ResultsThe sECoG spectra from the model were comparable with published normal awake EEG spectra. Prolongation of IPSP duration in the model caused inhibition of high frequencies and saturation of low frequencies with a peak in keeping with current evidence. IPSP prolongation alone was unable to reproduce alpha rhythms or the generalised increase in EEG power found with anaesthesia. Adding inhibition of postsynaptic ion homeostasis to IPSP prolongation helped retain alpha rhythms, increased sECoG power, and antagonised the slow-wave saturation peak in a dose-dependent fashion that appeared dependent on the postsynaptic membrane potential, providing a plausible mechanism for how metabolic changes can modulate anaesthesia sensitivity.ConclusionsOur model suggests how metabolic processes can modulate anaesthesia and produce non-receptor dependent drug sensitivity.Copyright © 2021 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.