• Arch Orthop Trauma Surg · Jan 2013

    Review

    Meniscus reconstruction: today's achievements and premises for the future.

    • Chaoxu Liu, Ionel Cristian Toma, Maddalena Mastrogiacomo, Christian Krettek, Gabriela von Lewinski, and Michael Jagodzinski.
    • Department of Orthopedic Trauma, Hannover Medical School (MHH), OE 6230 Carl-Neuberg-Straße 1, 30625 Hanover, Germany. liuchaoxu.0914@yahoo.com.cn
    • Arch Orthop Trauma Surg. 2013 Jan 1;133(1):95-109.

    AbstractInjuries of the meniscus remain a burden for the development of premature cartilage degeneration and osteoarthritis. This review surveys all treatment options and focuses on the recent development of tissue engineering. Tissue engineering of the meniscus means a successful combination of cells, scaffolds and specific stimuli. Each element of the combination can be subject to variation. Studies investigating the optimum meniscus implant and previous steps in producing these implants are presented in this article. A comprehensive search of the English and German literature was performed in PubMed to retrieve appropriate manuscripts for review. Based on the literatures, autografts and allografts can delay the progress of osteoarthritis for a restricted time period, but several concerns persist. The biomechanical properties of the native meniscus are not copied entirely by the current existing autografts. Congruence, fixation, biocompatibility and potential infection will always remain as limitations for the users of allografts. Long-term results are still not available for meniscus prosthesis and even though it permits fast recovery, several aspects are questionable: bioincompatibility and a lack of cellular adhesion are likely to compromise their long-term fate. Currently, there is no ideal implant generated by means of tissue engineering. However, meniscus tissue engineering is a fast developing field, which promises to develop an implant that mimics histological and biomechanical properties of the native meniscus. At present several cell sources and scaffolds have been used successfully to grow 3-dimensional constructs. In future, optimal implants have to be developed using growth factors, modified scaffolds and stimuli that support cellular proliferation and differentiation to regenerate the native meniscus more closely.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.