• J. Thorac. Cardiovasc. Surg. · Apr 2023

    Elucidating the mechanisms underlying left ventricular function recovery in patients with ischemic heart failure undergoing surgical remodeling: A 3-dimensional ultrasound analysis.

    • Serenella Castelvecchio, Matteo Frigelli, Francesco Sturla, Valentina Milani, Omar A Pappalardo, Michele Citarella, Lorenzo Menicanti, and Emiliano Votta.
    • Cardiac Surgery Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy.
    • J. Thorac. Cardiovasc. Surg. 2023 Apr 1; 165 (4): 14181429.e41418-1429.e4.

    ObjectiveThe study objective was to elucidate the mechanisms of left ventricle functional recovery in terms of endocardial contractility and synchronicity after surgical ventricular reconstruction.MethodsReal-time 3-dimensional transthoracic echocardiography was performed on 20 patients with anterior left ventricle remodeling and ischemic heart failure before surgical ventricular reconstruction and at 6-month follow-up, and on 15 healthy controls matched by age and body surface area. Real-time 3-dimensional transthoracic echocardiography datasets were analyzed through TomTec software (4D LV-Analysis; TomTec Imaging Systems GmbH, Unterschleissheim, Germany): Left ventricle volumes, ejection fraction, and global longitudinal strain were computed; the time-dependent endocardial surface yielded by 3-dimensional speckle-tracking echocardiography was postprocessed through in-house software to quantify local systolic minimum principal strain as a measure of fiber shortening and mechanical dispersion as a measure of fiber synchronicity.ResultsCompared with controls, patients with heart failure before surgical ventricular reconstruction showed lower ejection fraction (P < .0001) and significantly impaired mechanical dispersion (P < .0001) and minimum principal strain (P < .0001); the latter worsened progressively from left ventricle base to apex. After surgical ventricular reconstruction, global longitudinal strain improved from -6.7% to -11.3% (P < .0001); mechanical dispersion decreased in every left ventricle region (P ≤ .017) and mostly in the basal region, where computed mechanical dispersion values were comparable to physiologic values (P ≥ .046); minimum principal strain improved mostly in the basal region, changing from -16.6% to -22.3% (P = .0027).ConclusionsAt 6-month follow-up, surgical ventricular reconstruction was associated with significant recovery in global left ventricle function, improved mechanical dispersion indicating a more synchronous left ventricle contraction, and improved left ventricle fiber shortening mostly in the basal region, suggesting the major role of the remote myocardium in enhancing left ventricle functional recovery.Copyright © 2021 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.