-
- Sangram Nag, Katarina Varnäs, Ryosuke Arakawa, Mahabuba Jahan, Magnus Schou, Lars Farde, and Christer Halldin.
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden.
- Acs Chem Neurosci. 2020 Apr 1; 11 (7): 1048-1057.
AbstractThe metabotropic glutamate receptor subtype mGluR5 has been proposed as a potential drug target for CNS disorders such as anxiety, depression, Parkinson's disease, and epilepsy. The AstraZeneca compound AZD9272 has previously been labeled with carbon-11 and used as a PET radioligand for mGluR5 receptor binding. The molecular structure of AZD9272 allows one to label the molecule with fluorine-18 without altering the structure. The aim of this study was to develop a fluorine-18 analogue of AZD9272 and to examine its binding distribution in the nonhuman primate brain in vivo as well as to obtain whole body radiation dosimetry. 18F-AZD9272 was successfully synthesized from a nitro precursor. The radioligand was stable, with a radiochemical purity of >99% at 2 h after formulation in a sterile phosphate buffered solution (pH = 7.4). After injection of 18F-AZD9272 in two cynomolgus monkeys, the maximum whole brain radioactivity concentration was 4.9-6.7% of the injected dose (n = 2) and PET images showed a pattern of regional radioactivity consistent with that previously obtained for 11C-AZD9272. The percentage of parent radioligand in plasma was 59 and 64% (n = 2) at 120 min after injection of 18F-AZD9272, consistent with high metabolic stability. Two whole body PET scans were performed in nonhuman primates for a total of 231 min after injection of 18F-AZD9272. Highest uptakes were seen in liver and small intestine, followed by brain and kidney. The estimated effective dose was around 0.017 mSv/MBq. 18F-AZD9272 shows suitable properties as a PET radioligand for in vivo imaging of binding in the primate brain. 18F-labeled AZD9272 offers advantages over 11C-AZD9272 in terms of higher image resolution, combined with a longer half-life. Moreover, based on the distribution and the estimated radiation burden, imaging of 18F-AZD9272 could be used as an improved tool for quantitative assessment and characterization of AZD9272 binding sites in the human brain by using PET.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.