• Biomed. Pharmacother. · Feb 2018

    CXCL16/ROCK1 signaling pathway exacerbates acute kidney injury induced by ischemia-reperfusion.

    • Hua Liang, Meijuan Liao, Weicheng Zhao, Xueqin Zheng, Feng Xu, Hanbing Wang, and Jian Huang.
    • Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China; Department of Anesthesiology, Affiliated Luoding Hospital of Guangdong Medical University, Luoding 527200, China. Electronic address: lhlh2003@126.com.
    • Biomed. Pharmacother. 2018 Feb 1; 98: 347-356.

    AbstractRenal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI) resulting in an abrupt deterioration of kidney function. CXC chemokine ligand 16 (CXCL16) contributes significantly to the pathogenesis of renal injury. However, the signaling pathway mechanisms of CXCL16 in IRI-induced AKI remains obscured. In this study, we examined the role of the CXCL16/ Rho Associated Coiled-Coil Containing Protein Kinase-1 (ROCK1) signaling pathway in AKI induced by IRI. In vivo, CXCL16 was induced markedly after IRI. Mice treated with anti-CXCL16 antibody displayed less severe renal dysfunction and tubular injury in response to IRI compared with vehicle-treated mice. Inhibition of CXCL16 substantially reduced apoptotic cells and suppresses caspase-3 activation in the kidneys of mice following IRI. Additionally, CXCL16 inhibition profoundly decreased the production of TNF-α, IL-1β and IL-6 in the kidneys of mice post IRI. Furthermore, the level of ROCK1 protein was upregulated in the kidney in response to IRI, an effect that was abolished by CXCL16 inhibitor. Finally, treatment with Y-27632 (a ROCK1 inhibitor) attenuated deterioration of renal function and tubular damage of mice after IRI. Administration of Y-27632 ameliorated apoptosis in the IRI-treated kidneys of mice. In injured HK-2 cells, CXCL16 activated ROCK1 resulting in the upregulation of caspase-3 protein and pro-inflammatory molecules, which was abolished by Y-27632. In summary, our findings demonstrate that CXCL16/ROCK1 signaling pathway may play an important role in the pathogenesis of IRI-induced AKI.Copyright © 2017 Elsevier Masson SAS. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.