• Biochem. Biophys. Res. Commun. · Oct 2018

    Truncated dystrophin ameliorates the dystrophic phenotype of mdx mice by reducing sarcolipin-mediated SERCA inhibition.

    • Jun Tanihata, Tetsuya Nagata, Naoki Ito, Takashi Saito, Akinori Nakamura, Susumu Minamisawa, Yoshitsugu Aoki, Urs T Ruegg, and Shin'ichi Takeda.
    • Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan; Department of Cell Physiology, The Jikei University School of Medicine, Minato, Japan.
    • Biochem. Biophys. Res. Commun. 2018 Oct 20; 505 (1): 51-59.

    AbstractDuchenne muscular dystrophy (DMD) and the less severe Becker muscular dystrophy (BMD) are due to mutations in the DMD gene. Previous reports show that in-frame deletion of exons 45-55 produces an internally shorted, but functional, dystrophin protein resulting in a very mild BMD phenotype. In order to elucidate the molecular mechanism leading to this phenotype, we generated exon 45-55 deleted dystrophin transgenic/mdx (Tg/mdx) mice. Muscular function of Tg/mdx mice was restored close to that of wild type (WT) mice but the localization of the neuronal type of nitric oxide synthase was changed from the sarcolemma to the cytosol. This led to hyper-nitrosylation of the ryanodine receptor 1 causing increased Ca2+ release from the sarcoplasmic reticulum. On the other hand, Ca2+ reuptake by the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) was restored to the level of WT mice, suggesting that the Ca2+ dysregulation had been compensated by SERCA activation. In line with this, expression of sarcolipin (SLN), a SERCA-inhibitory peptide, was upregulated in mdx mice, but strongly reduced in Tg/mdx mice. Furthermore, knockdown of SLN ameliorated the cytosolic Ca2+ homeostasis and the dystrophic phenotype in mdx mice. These findings suggest that SLN may be a novel target for DMD therapy.Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.