• Am. J. Med. · Aug 2021

    Peripheral Plasma Cells Associated with Mortality Benefit in Severe COVID-19: A Marker of Disease Resolution.

    • Mary Boulanger, Emily Molina, Kunbo Wang, Thomas Kickler, Yanxun Xu, and Brian T Garibaldi.
    • Department of Medicine, Johns Hopkins Hospital, Baltimore, Md. Electronic address: mboulan1@jhmi.edu.
    • Am. J. Med. 2021 Aug 1; 134 (8): 102910331029-1033.

    BackgroundCytokines seen in severe coronavirus disease 2019 (COVID-19) are associated with proliferation, differentiation, and survival of plasma cells. Plasma cells are not routinely found in peripheral blood, though may produce virus-neutralizing antibodies in COVID-19 later in the course of an infection.MethodsUsing the Johns Hopkins COVID-19 Precision Medicine Analytics Platform Registry, we identified hospitalized adult patients with confirmed severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and stratified by presence of plasma cells and World Health Organization (WHO) disease severity. To identify plasma cells, we employed a sensitive flow cytometric screening method for highly fluorescent lymphocytes and confirmed these microscopically. Cox regression models were used to evaluate time to death and time to clinical improvement by the presence of plasma cells in patients with severe disease.ResultsOf 2301 hospitalized patients with confirmed infection, 371 had plasma cells identified. Patients with plasma cells were more likely to have severe disease, though 86.6% developed plasma cells after onset of severe disease. In patients with severe disease, after adjusting for age, sex, body mass index, race, and other covariates associated with disease severity, patients with plasma cells had a reduced hazard of death (adjusted hazard ratio: 0.57; 95% confidence interval: 0.38-0.87; P value: .008). There was no significant association with the presence of plasma cells and time to clinical improvement.ConclusionsPatients with severe disease who have detectable plasma cells in the peripheral blood have improved mortality despite adjusting for known covariates associated with disease severity in COVID-19. Further investigation is warranted to understand the role of plasma cells in the immune response to COVID-19.Copyright © 2021 Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.