• Eur Spine J · Dec 2013

    Comparative Study

    Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades.

    • Tobias L Schulte, Alexander Keiler, Felix Riechelmann, Tobias Lange, and Werner Schmoelz.
    • Department of Orthopedics and Tumor Orthopedics, Münster University Hospital, Münster, Germany.
    • Eur Spine J. 2013 Dec 1;22(12):2695-701.

    PurposeVertebral augmentation with PMMA is a widely applied treatment of vertebral osteoporotic compression fractures. Subsequent fractures are a common complication, possibly due to the relatively high stiffness of PMMA in comparison with bone. Silicone as an augmentation material has biomechanical properties closer to those of bone and might, therefore, be an alternative. The study aimed to investigate the biomechanical differences, especially stiffness, of vertebral bodies with two augmentation materials and two filling grades.MethodsForty intact human osteoporotic vertebrae (T10-L5) were studied. Wedge fractures were produced in a standardized manner. For treatment, PMMA and silicone at two filling grades (16 and 35 % vertebral body fill) were assigned to four groups. Each specimen received 5,000 load cycles with a high load range of 20-65 % of fracture force, and stiffness was measured. Additional low-load stiffness measurements (100-500 N) were performed for intact and augmented vertebrae and after cyclic loading.ResultsLow-load stiffness testing after cyclic loading normalized to intact vertebrae showed increased stiffness with 35 and 16 % PMMA (115 and 110 %) and reduced stiffness with 35 and 16 % silicone (87 and 82 %). After cyclic loading (high load range), the stiffness normalized to the untreated vertebrae was 361 and 304 % with 35 and 16 % PMMA, and 243 and 222 % with 35 and 16 % silicone augmentation. For both high and low load ranges, the augmentation material had a significant effect on the stiffness of the augmented vertebra, while the filling grade did not significantly affect stiffness.ConclusionsThis study for the first time directly compared the stiffness of silicone-augmented and PMMA-augmented vertebral bodies. Silicone may be a viable option in the treatment of osteoporotic fractures and it has the biomechanical potential to reduce the risk of secondary fractures.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.