• Am. J. Physiol., Cell Physiol. · Dec 2019

    Burn-induced reductions in mitochondrial abundance and efficiency are more pronounced with small volumes of colloids in swine.

    • Tony Chao, Belinda I Gómez, Tiffany C Heard, Brian W Smith, Michael A Dubick, and David M Burmeister.
    • Damage Control Resuscitation Task Area, United States Army Institute of Surgical Research, San Antonio, Texas.
    • Am. J. Physiol., Cell Physiol. 2019 Dec 1; 317 (6): C1229-C1238.

    AbstractSevere burn injury results in systemic disruption of metabolic regulations and impaired cardiac function. Restoration of hemodynamic homeostasis utilizing intravenous (IV) fluids is critical for acute care of the burn victim. However, the effects of burns and resuscitation on cardiomyocyte mitochondria are currently unknown. The purpose of this study is to determine cardiac mitochondrial function in a swine burn model with subsequent resuscitation using either crystalloids or colloids. Anesthetized Yorkshire swine (n = 23) sustained 40% total body surface area burns and received IV crystalloids (n = 11) or colloids (n = 12) after recovery from anesthesia. Non-burned swine served as controls (n = 9). After euthanasia at 48 h, heart tissues were harvested, permeabilized, and analyzed by high-resolution respirometry. Citrate synthase (CS) activity was measured, and Western blots were performed to quantify proteins associated with mitochondrial fusion (OPA1), fission (FIS1), and mitophagy (PINK1). There were no differences in state 2 respiration or maximal oxidative phosphorylation. Coupled complex 1 respiration decreased, while uncoupled state 4O and complex II increased significantly due to burn injury, particularly in animals receiving colloids (P < 0.05). CS activity and electron transfer coupling efficiency were significantly lower in burned animals, particularly with colloid treatment (P < 0.05). Protein analysis revealed increased FIS1 but no differences in mitophagy in cardiac tissue from colloid-treated compared with crystalloid-treated swine. Taken together, severe burns alter mitochondrial respiration in heart tissue, which may be exacerbated by early IV resuscitation with colloids. Early IV burn resuscitation with colloids may require close hemodynamic observation. Mitochondrial stabilizing agents incorporated into resuscitation fluids may help the hemodynamic response to burn injury.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.