-
Observational Study
PREDICTORS OF SICKNESS ABSENCE IN A CLINICAL POPULATION WITH CHRONIC PAIN.
- Riccardo LoMartire, Örjan Dahlström, Mathilda Björk, Linda Vixner, Paolo Frumento, Lea Constan, Björn Gerdle, and Björn Olov Äng.
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden; School of Health and Welfare, Dalarna University, Falun, Sweden. Electronic address: riccardo.lo.martire@ki.se.
- J Pain. 2021 Oct 1; 22 (10): 118011941180-1194.
AbstractChronic pain-related sickness absence is an enormous socioeconomic burden globally. Optimized interventions are reliant on a lucid understanding of the distribution of social insurance benefits and their predictors. This register-based observational study analyzed data for a 7-year period from a population-representative sample of 44,241 chronic pain patients eligible for interdisciplinary treatment (IDT) at specialist clinics. Sequence analysis was used to describe the sickness absence over the complete period and to separate the patients into subgroups based on their social insurance benefits over the final 2 years. The predictive performance of features from various domains was then explored with machine learning-based modeling in a nested cross-validation procedure. Our results showed that patients on sickness absence increased from 17% 5 years before to 48% at the time of the IDT assessment, and then decreased to 38% at the end of follow-up. Patients were divided into 3 classes characterized by low sickness absence, sick leave, and disability pension, with eight predictors of class membership being identified. Sickness absence history was the strongest predictor of future sickness absence, while other predictors included a 2008 policy, age, confidence in recovery, and geographical location. Information on these features could guide personalized intervention in the specialized healthcare. PERSPECTIVE: This study describes sickness absence in patients who visited a Swedish pain specialist interdisciplinary treatment clinic during the period 2005 to 2016. Predictors of future sickness absence are also identified that should be considered when adapting IDT programs to the patient's needs.Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.