• J. Appl. Physiol. · Jun 2015

    Asynchrony of lingual muscle recruitment during sleep in obstructive sleep apnea.

    • Yaniv Dotan, Giora Pillar, Alan R Schwartz, and Arie Oliven.
    • Bnai-Zion Medical Centre, Haifa, Israel;
    • J. Appl. Physiol. 2015 Jun 15; 118 (12): 1516-24.

    AbstractPharyngeal collapsibility during sleep increases primarily due to decline in dilator muscle activity. However, genioglossus EMG is known to increase during apneas and hypopneas, usually without reversing upper airway obstruction or inspiratory flow limitation. The present study was undertaken to test the hypothesis that intense activation of the genioglossus fails to prevent pharyngeal obstruction during sleep, and to evaluate if sleep-induced changes in tongue muscle coordination may be responsible for this phenomenon. We compared genioglossus and tongue retractors EMG activity in 13 obstructive sleep apnea (OSA) patients during wakefulness, while breathing through inspiratory resistors, to the activity observed at the end of apneas and hypopneas after 25 mg of brotizolam, before arousal, at equal esophageal pressure. During wakefulness, resistive breathing triggered increases in both genioglossus and retractor EMG. Activation of agonist tongue muscles differed considerably from that of the arm, as both genioglossus and retractors were activated similarly during all tongue movements. During sleep, flow limitation triggered increases in genioglossal EMG that could reach more than twofold the level observed while awake. In contrast, EMGs of the retractors reached less than half the wakefulness level. In sleeping OSA patients, genioglossal activity may increase during obstructed breathing to levels that exceed substantially those required to prevent pharyngeal collapse during wakefulness. In contrast, coactivation of retractors is deficient during sleep. These findings suggest that sleep-induced alteration in tongue muscle coordination may be responsible for the failure of high genioglossal EMG activity to alleviate flow limitation. Copyright © 2015 the American Physiological Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.