• J. Am. Coll. Surg. · Jun 2021

    Applying Machine Learning across Sites: External Validation of a Surgical Site Infection Detection Algorithm.

    • Ying Zhu, Gyorgy J Simon, Elizabeth C Wick, Yumiko Abe-Jones, Nader Najafi, Adam Sheka, Roshan Tourani, Steven J Skube, Zhen Hu, and Genevieve B Melton.
    • Institute for Health Informatics, University of Minnesota, Twin Cities, Minneapolis, MN.
    • J. Am. Coll. Surg. 2021 Jun 1; 232 (6): 963-971.e1.

    BackgroundSurgical complications have tremendous consequences and costs. Complication detection is important for quality improvement, but traditional manual chart review is burdensome. Automated mechanisms are needed to make this more efficient. To understand the generalizability of a machine learning algorithm between sites, automated surgical site infection (SSI) detection algorithms developed at one center were tested at another distinct center.Study DesignNSQIP patients had electronic health record (EHR) data extracted at one center (University of Minnesota Medical Center, Site A) over a 4-year period for model development and internal validation, and at a second center (University of California San Francisco, Site B) over a subsequent 2-year period for external validation. Models for automated NSQIP SSI detection of superficial, organ space, and total SSI within 30 days postoperatively were validated using area under the curve (AUC) scores and corresponding 95% confidence intervals.ResultsFor the 8,883 patients (Site A) and 1,473 patients (Site B), AUC scores were not statistically different for any outcome including superficial (external 0.804, internal [0.784, 0.874] AUC); organ/space (external 0.905, internal [0.867, 0.941] AUC); and total (external 0.855, internal [0.854, 0.908] AUC) SSI. False negative rates decreased with increasing case review volume and would be amenable to a strategy in which cases with low predicted probabilities of SSI could be excluded from chart review.ConclusionsOur findings demonstrated that SSI detection machine learning algorithms developed at 1 site were generalizable to another institution. SSI detection models are practically applicable to accelerate and focus chart review.Copyright © 2021 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.