-
Int. J. Radiat. Oncol. Biol. Phys. · Jan 2001
Extracranial radiosurgery: immobilizing liver motion in dogs using high-frequency jet ventilation and total intravenous anesthesia.
- F Yin, J G Kim, C Haughton, S L Brown, M Ajlouni, M Stronati, N Pamukov, and J H Kim.
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI 48202-3450, USA. Fyin1@hfhs.org
- Int. J. Radiat. Oncol. Biol. Phys. 2001 Jan 1; 49 (1): 211-6.
PurposeExtracranial radiosurgery requires control of organ motion. The purpose of this study is to quantitatively determine the extent of liver motion in anesthetized dogs with continuous i.v. propofol infusion with or without muscle relaxants and high-frequency jet ventilation.Methods And MaterialsFive dogs were used in the experiment. Each dog was restrained while anesthetized in the supine position using an alpha cradle. Surgical metal clips were implanted around the liver periphery so that its motion could be visualized using a fluoroscopic imaging device in a conventional simulator. Initially, two orthogonal simulation films were taken to correlate locations of implanted clips. Two orthogonal views of fluoroscopic images for each anesthetized dog were recorded on a magnetic tape and analyzed from the post-imaging data. Liver motion was documented under the following three conditions: 1) ventilated with a conventional mechanical ventilator, 2) ventilated with a high-frequency jet ventilator, and 3) ventilated with a high-frequency jet ventilator and total muscle paralysis (with vecuronium injection). The maximum liver motion for each dog was analyzed in three orthogonal directions: the inferior-to-superior direction, the anterior-to-posterior direction, and the right-to-left direction.ResultsWhen the anesthetized dogs were ventilated with a conventional mechanical ventilator, the average liver motions were 1.2 cm in the inferior-to-superior direction, 0.4 cm in the anterior-to-posterior direction, and 0.2 cm in the right-to-left direction, respectively. After the introduction of high-frequency jet ventilation, the average liver motions were reduced to 0.2 cm in the inferior-to-superior direction, 0.2 cm in the anterior-to-posterior direction, and 0.1 cm in the right-to-left direction. The maximum liver motion was dependent on ventilator settings. There was no additional measurable motion reduction with the addition of the muscle relaxant.ConclusionThe liver motion in each anesthetized dog was controlled under 3.0 mm in all directions with the use of high-frequency jet ventilation. No detectable advantage was identified by the injection of muscle relaxant in terms of further reducing the liver motion. The preclinical animal study indicated that the use of high-frequency jet ventilation (HFJV) would be able to limit the liver motion to an extent acceptable for the application of extracranial radiosurgery in humans. Radiosurgery for localized liver tumors warrants further investigation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.