• J. Neurosci. · Oct 2019

    Muscarinic Inhibition of Hypoglossal Motoneurons: Possible Implications for Upper Airway Muscle Hypotonia during REM Sleep.

    • Lin Zhu, Nancy L Chamberlin, and Elda Arrigoni.
    • Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215 linzhubio@gmail.com earrigon@bidmc.harvard.edu.
    • J. Neurosci. 2019 Oct 2; 39 (40): 7910-7919.

    AbstractProper function of pharyngeal dilator muscles, including the genioglossus muscle of the tongue, is required to maintain upper airway patency. During sleep, the activity of these muscles is suppressed, and as a result individuals with obstructive sleep apnea experience repeated episodes of upper airway closure when they are asleep, in particular during rapid-eye-movement (REM) sleep. Blocking cholinergic transmission in the hypoglossal motor nucleus (MoXII) restores REM sleep genioglossus activity, highlighting the importance of cholinergic transmission in the inhibition of hypoglossal motor neurons (HMNs) during REM sleep. Glutamatergic afferent input from neurons in the parahypoglossal (PH) region to the HMNs is critical for MoXII respiratory motor output. We hypothesized that state-dependent cholinergic regulation may be mediated by this pathway. Here we studied the effects of cholinergic transmission in HMNs in adult male and female mice using patch-clamp recordings in brain slices. Using channelrhodopsin-2-assisted circuit mapping, we first demonstrated that PH glutamatergic neurons directly and robustly activate HMNs (PHGlut → HMNs). We then show that carbachol consistently depresses this input and that this effect is presynaptic. Additionally, carbachol directly affects HMNs by a variable combination of muscarinic-mediated excitatory and inhibitory responses. Altogether, our results suggest that cholinergic signaling impairs upper airway dilator muscle activity by suppressing glutamatergic input from PH premotoneurons to HMNs and by directly inhibiting HMNs. Our findings highlight the complexity of cholinergic control of HMNs at both the presynaptic and postsynaptic levels and provide a possible mechanism for REM sleep suppression of upper airway muscle activity.SIGNIFICANCE STATEMENT Individuals with obstructive sleep apnea can breathe adequately when awake but experience repeated episodes of upper airway closure when asleep, in particular during REM sleep. Similar to skeletal postural muscles, pharyngeal dilator muscles responsible for maintaining an open upper airway become hypotonic during REM sleep. Unlike spinal motoneurons controlling postural muscles that are inhibited by glycinergic transmission during REM sleep, hypoglossal motoneurons that control the upper airway muscles are inhibited in REM sleep by the combination of monoaminergic disfacilitation and cholinergic inhibition. In this study, we demonstrated how cholinergic signaling inhibits hypoglossal motoneurons through presynaptic and postsynaptic muscarinic receptors. Our results provide a potential mechanism for upper airway hypotonia during REM sleep.Copyright © 2019 the authors.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…