-
- Renata Kowara, Kristoffer Laser Moraleja, and Balu Chakravarthy.
- National Research Council, Institute for Biological Sciences, M-54, Ottawa, Ontario, Canada K1A 0R6. Renata.Kowara@nrc-cnrc.gc.ca
- Brain Res. 2006 Nov 13; 1119 (1): 40-9.
AbstractDihydropyrimidinase-like 3 (DPYSL3), a member of TUC (TOAD-64/Ulip/CRMP), is believed to play a role in neuronal differentiation, axonal outgrowth and possibly in neuronal regeneration. Recently, we have shown that in primary cortical neurons (PCN) NMDA and oxidative stress (H(2)O(2)) caused a calpain-dependent cleavage of DPYSL3 (62 kDa) resulting in the appearance of a lower molecular weight form (60 kDa) of DPYSL3. Our preliminary results had shown that antioxidants significantly reduced NMDA-induced DPYSL3 degradation, indicating involvement of ROS in calpain activation. The aim of this study was to investigate the possible involvement of NOS in NMDA-induced DPYSL3 degradation. We found that NOS inhibitor (L-NAME) significantly prevented NMDA-induced ROS formation, as well as intracellular Ca(2+) increase [Ca(2+)](i), DPYSL3 degradation and cell death. Further, exposure of PCN to NO donor (SNP) resulted in significant [Ca(2+)](i) increase, ROS generation and probable calpain-mediated DPYSL3 truncation. The NMDA- and oxidative stress (ROS)-induced DPYSL3 truncation was totally dependent on extracellular [Ca(2+)](i). While NMDA-induced DPYSL3 truncation was blocked by both NMDA receptor antagonist (MK801) [Kowara, R., Chen, Q., Milliken, M., Chakravarthy, B., 2005. Calpain-mediated degradation of dihydropyrimidinase-like 3 protein (DPYSL3) in response to NMDA and H(2)O(2) toxicity. J. Neurochem. 95 (2), 466-474] and L-VGCC (nimodipine) inhibitors, H(2)O(2)-induced increase in [Ca(2+)](i), ROS generation and DPYSL3 truncation was blocked only by nimodipine. These results indicate that changes in Ca(2+) homeostasis resulting from ROS-dependent activation of L-VGCC are sufficient to induce probable calpain-mediated DPYSL3 truncation and demonstrate for the first time the role of ROS in the mechanism leading to glutamate-induced calpain activation and DPYSL3 protein degradation. The probable calpain-mediated DPYSL3 truncation may have significant impact on its interaction with actin and its assembly, and in turn on growth cone integrity.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.