-
- Sofia Molina, Gabriela Martinez-Zayas, Paula V Sainz, Cheuk H Leung, Liang Li, Horiana B Grosu, Roberto Adachi, and David E Ost.
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX.
- Chest. 2021 Sep 1; 160 (3): 1075-1094.
BackgroundEvidence-based guidelines recommend management strategies for malignant pleural effusions (MPEs) based on life expectancy. Existent risk-prediction rules do not provide precise individualized survival estimates.Research QuestionCan a newly developed continuous risk-prediction survival model for patients with MPE and known metastatic disease provide precise survival estimates?Study Design And MethodsSingle-center retrospective cohort study of patients with proven malignancy, pleural effusion, and known metastatic disease undergoing thoracentesis from 2014 through 2017. The outcome was time from thoracentesis to death. Risk factors were identified using Cox proportional hazards models. Effect-measure modification (EMM) was tested using the Mantel-Cox test and was addressed by using disease-specific models (DSMs) or interaction terms. Three DSMs and a combined model using interactions were generated. Discrimination was evaluated using Harrell's C-statistic. Calibration was assessed by observed-minus-predicted probability graphs at specific time points. Models were validated using patients treated from 2010 through 2013. Using LENT (pleural fluid lactate dehydrogenase, Eastern Cooperative Oncology Group performance score, neutrophil-to-lymphocyte ratio and tumor type) variables, we generated both discrete (LENT-D) and continuous (LENT-C) models, assessing discrete vs continuous predictors' performances.ResultsThe development and validation cohort included 562 and 727 patients, respectively. The Mantel-Cox test demonstrated interactions between cancer type and neutrophil to lymphocyte ratio (P < .0001), pleural fluid lactate dehydrogenase (P = .029), and bilateral effusion (P = .002). DSMs for lung, breast, and hematologic malignancies showed C-statistics of 0.72, 0.72, and 0.62, respectively; the combined model's C-statistics was 0.67. LENT-D (C-statistic, 0.60) and LENT-C (C-statistic, 0.65) models underperformed.InterpretationEMM is present between cancer type and other predictors; thus, DSMs outperformed the models that failed to account for this. Discrete risk-prediction models lacked enough precision to be useful for individual-level predictions.Copyright © 2021 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.