• J. Neurosci. · Aug 2016

    The Nucleus Reuniens of the Midline Thalamus Gates Prefrontal-Hippocampal Modulation of Ventral Tegmental Area Dopamine Neuron Activity.

    • Eric C Zimmerman and Anthony A Grace.
    • Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 ecz5@pitt.edu.
    • J. Neurosci. 2016 Aug 24; 36 (34): 8977-84.

    UnlabelledThe circuitry mediating top-down control of dopamine (DA) neurons in the ventral tegmental area (VTA) is exceedingly complex. Characterizing these networks will be critical to our understanding of fundamental behaviors, such as motivation and reward processing, as well as several disease states. Previous work suggests that the medial prefrontal cortex (mPFC) exerts a profound influence on VTA DA neuron firing. Recently, our group reported that inhibition of the infralimbic subdivision of the medial prefrontal cortex (ilPFC) increases the proportion of VTA DA neurons that are spontaneously active (i.e., "population activity") and that this effect depends on activity in the ventral subiculum of the hippocampus (vSub). However, there is no direct projection from the mPFC to the vSub. Anatomical evidence suggests that communication between the two structures is mediated by the nucleus reuniens of the midline thalamus (RE). Here, we used in vivo electrophysiological and behavioral approaches in rats to explore the role of the RE in the circuitry governing VTA DA neuron firing. We show that pharmacological stimulation of the RE enhances VTA DA neuron population activity and amphetamine-induced hyperlocomotion, a behavioral indicator of an over-responsive DA system. Furthermore, the effect of RE stimulation on population activity is prevented if vSub is also inhibited. Finally, pharmacological inhibition of ilPFC enhances VTA DA neuron population activity, but this effect does not occur if RE is also inhibited. These findings suggest that disruption of ilPFC-RE-vSub communication could lead to a dysregulated, hyperdopaminergic state, and may play a role in psychiatric disorders.Significance StatementDopamine (DA) neurons in the ventral tegmental area (VTA) are involved in a variety of fundamental brain functions. To understand the neurobiological basis for these functions it is essential to identify regions controlling DA neuron activity. The medial prefrontal cortex (mPFC) is emerging as a key regulator of DA neuron activity, but the circuitry by which it exerts its influence remains poorly described. Here, we show that the nucleus reuniens of the midline thalamus gates mPFC control of VTA DA neuron firing by the hippocampus. These data identify a unique role for this corticothalamic-hippocampal circuit, and suggest that dysfunction in these regions likely influences the pathophysiology of psychiatric disorders.Copyright © 2016 the authors 0270-6474/16/368977-08$15.00/0.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.