• Neuromodulation · Feb 2022

    Identification of Deep Brain Stimulation Targets for Neuropathic Pain After Spinal Cord Injury Using Localized Increases in White Matter Fiber Cross Section.

    • Shana R Black, Andrew Janson, Mark Mahan, Jeffrey Anderson, and Christopher R Butson.
    • Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.
    • Neuromodulation. 2022 Feb 1; 25 (2): 276285276-285.

    ObjectivesThe spinal cord injury (SCI) patient population is overwhelmingly affected by neuropathic pain (NP), a secondary condition for which therapeutic options are limited and have a low degree of efficacy. The objective of this study was to identify novel deep brain stimulation (DBS) targets that may theoretically benefit those with NP in the SCI patient population. We hypothesize that localized changes in white matter identified in SCI subjects with NP compared to those without NP could be used to develop an evidence-based approach to DBS target identification.Materials And MethodsTo classify localized neurostructural changes associated with NP in the SCI population, we compared white matter fiber density (FD) and cross section (FC) between SCI subjects with NP (n = 17) and SCI subjects without NP (n = 15) using diffusion-weighted magnetic resonance imaging (MRI). We then identified theoretical target locations for DBS using fiber bundles connected to significantly altered regions of white matter. Finally, we used computational models of DBS to determine if our theoretical target locations could be used to feasibly activate our fiber bundles of interest.ResultsWe identified significant increases in FC in the splenium of the corpus callosum in pain subjects when compared to controls. We then isolated five fiber bundles that were directly connected to the affected region of white matter. Our models were able to predict that our fiber bundles of interest can be feasibly activated with DBS at reasonable stimulation amplitudes and with clinically relevant implantation approaches.ConclusionsAltogether, we identified neuroarchitectural changes associated with NP in the SCI cohort and implemented a novel evidence-driven target selection approach for DBS to guide future research in neuromodulation treatment of NP after SCI.Copyright © 2021. Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…