• J Orthop Surg Res · Apr 2018

    Observational Study

    3D printing-based minimally invasive cannulated screw treatment of unstable pelvic fracture.

    • Leyi Cai, Yingying Zhang, Chunhui Chen, Yiting Lou, Xiaoshan Guo, and Jianshun Wang.
    • Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
    • J Orthop Surg Res. 2018 Apr 4; 13 (1): 71.

    BackgroundOpen reduction and internal fixation of pelvic fractures could restore the stability of the pelvic ring, but there were several problems. Minimally invasive closed reduction cannulated screw treatment of pelvic fractures has lots advantages. However, how to insert the cannulated screw safely and effectively to achieve a reliable fixation were still hard for orthopedist. Our aim was to explore the significance of 3D printing technology as a new method for minimally invasive cannulated screw treatment of unstable pelvic fracture.MethodsOne hundred thirty-seven patients with unstable pelvic fractures from 2014 to 2016 were retrospectively analyzed. Based on the usage of 3D printing technology for preoperative simulation surgery, they were assigned to 3D printing group (n = 65) and control group (n = 72), respectively. These two groups were assessed in terms of operative time, intraoperative fluoroscopy, postoperative reduction effect, fracture healing time, and follow-up function. The effect of 3D printing technology was evaluated through minimally invasive cannulated screw treatment.ResultsThere was no significant difference in these two groups with respect to general conditions, such as age, gender, fracture type, time from injury to operation, injury cause, and combined injury. Length of surgery and average number of fluoroscopies were statistically different for 3D printing group and the control group (p < 0.01), i.e., 58.6 vs. 72.3 min and 29.3 vs. 37 min, respectively. Using the Matta radiological scoring systems, the reduction was scored excellent in 21/65 cases (32.3%) and good in 30/65 cases (46.2%) for the 3D printing group, versus 22/72 cases (30.6%) scored as excellent and 36/72 cases (50%) as good for the control group. On the other hand, using the Majeed functional scoring criteria, there were 27/65 (41.5%) excellent and 26/65 (40%) good cases for the 3D printing group in comparison to 30/72 (41.7%) and 28/72 (38.9%) cases for the control group, respectively. This suggests no significant difference between these two groups about the function outcomes.ConclusionFull reduction and proper fixation of the pelvic ring and reconstruction of anatomical morphology are of great significance to patients' early functional exercise and for the reduction of long-term complications. This retrospective study has demonstrated the 3D printing technology as a potential approach for improving the diagnosis and treatment of pelvic fractures.Trial RegistrationThe study was retrospectively registered at the Chinese Clinical Trial Registry, number: ChiCTR-TRC-17012798, trial registration date: 26 Sept. 2017.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.