-
- Justin R Ryan, Tsinsue Chen, Peter Nakaji, David H Frakes, and L Fernando Gonzalez.
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA. Electronic address: jrryan@asu.edu.
- World Neurosurg. 2015 Nov 1;84(5):1333-9.
BackgroundEducational simulators provide a means for students and experts to learn and refine surgical skills. Educators can leverage the strengths of medical simulators to effectively teach complex and high-risk surgical procedures, such as placement of an external ventricular drain.ObjectiveOur objective was to develop a cost-effective, patient-derived medical simulacrum for cerebral lateral ventriculostomy.MethodsA cost-effective, patient-derived medical simulacrum was developed for placement of an external lateral ventriculostomy. Elastomeric and gel casting techniques were used to achieve realistic brain geometry and material properties. 3D printing technology was leveraged to develop accurate cranial properties and dimensions. An economical, gravity-driven pump was developed to provide normal and abnormal ventricular pressures. A small pilot study was performed to gauge simulation efficacy using a technology acceptance model.ResultsAn accurate geometric representation of the brain was developed with independent lateral cerebral ventricular chambers. A gravity-driven pump pressurized the ventricular cavities to physiologic values. A qualitative study illustrated that the simulation has potential as an educational tool to train medical professionals in the ventriculostomy procedure.ConclusionThe ventricular simulacrum can improve learning in a medical education environment. Rapid prototyping and multi-material casting techniques can produce patient-derived models for cost-effective and realistic surgical training scenarios.Copyright © 2015 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.