• Anesthesia and analgesia · May 2021

    Review

    The Neural Circuits Underlying General Anesthesia and Sleep.

    • Olivia A Moody, Edlyn R Zhang, Kathleen F Vincent, Risako Kato, Eric D Melonakos, Christa J Nehs, and Ken Solt.
    • From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.
    • Anesth. Analg. 2021 May 1; 132 (5): 125412641254-1264.

    AbstractGeneral anesthesia is characterized by loss of consciousness, amnesia, analgesia, and immobility. Important molecular targets of general anesthetics have been identified, but the neural circuits underlying the discrete end points of general anesthesia remain incompletely understood. General anesthesia and natural sleep share the common feature of reversible unconsciousness, and recent developments in neuroscience have enabled elegant studies that investigate the brain nuclei and neural circuits underlying this important end point. A common approach to measure cortical activity across the brain is electroencephalogram (EEG), which can reflect local neuronal activity as well as connectivity among brain regions. The EEG oscillations observed during general anesthesia depend greatly on the anesthetic agent as well as dosing, and only some resemble those observed during sleep. For example, the EEG oscillations during dexmedetomidine sedation are similar to those of stage 2 nonrapid eye movement (NREM) sleep, but high doses of propofol and ether anesthetics produce burst suppression, a pattern that is never observed during natural sleep. Sleep is primarily driven by withdrawal of subcortical excitation to the cortex, but anesthetics can directly act at both subcortical and cortical targets. While some anesthetics appear to activate specific sleep-active regions to induce unconsciousness, not all sleep-active regions play a significant role in anesthesia. Anesthetics also inhibit cortical neurons, and it is likely that each class of anesthetic drugs produces a distinct combination of subcortical and cortical effects that lead to unconsciousness. Conversely, arousal circuits that promote wakefulness are involved in anesthetic emergence and activating them can induce emergence and accelerate recovery of consciousness. Modern neuroscience techniques that enable the manipulation of specific neural circuits have led to new insights into the neural circuitry underlying general anesthesia and sleep. In the coming years, we will continue to better understand the mechanisms that generate these distinct states of reversible unconsciousness.Copyright © 2021 International Anesthesia Research Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…