-
J. Med. Internet Res. · Jul 2018
Patient-Centered eHealth Interventions for Children, Adolescents, and Adults With Sickle Cell Disease: Systematic Review.
- Sherif M Badawy, Robert M Cronin, Jane Hankins, Lori Crosby, Michael DeBaun, Alexis A Thompson, and Nirmish Shah.
- Division of Hematology, Oncology and Stem Cell Transplant, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, United States.
- J. Med. Internet Res. 2018 Jul 19; 20 (7): e10940.
BackgroundSickle cell disease is an inherited blood disorder that affects over 100,000 Americans. Sickle cell disease-related complications lead to significant morbidity and early death. Evidence supporting the feasibility, acceptability, and efficacy of self-management electronic health (eHealth) interventions in chronic diseases is growing; however, the evidence is unclear in sickle cell disease.ObjectiveWe systematically evaluated the most recent evidence in the literature to (1) review the different types of technological tools used for self-management of sickle cell disease, (2) discover and describe what self-management activities these tools were used for, and (3) assess the efficacy of these technologies in self-management.MethodsWe reviewed literature published between 1995 and 2016 with no language limits. We searched MEDLINE, EMBASE, CINAHL, PsycINFO, and other sources. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Two independent reviewers screened titles and abstracts, assessed full-text articles, and extracted data from articles that met inclusion criteria. Eligible studies were original research articles that included texting, mobile phone-based apps, or other eHealth interventions designed to improve self-management in pediatric and adult patients with sickle cell disease.ResultsOf 1680 citations, 16 articles met all predefined criteria with a total of 747 study participants. Interventions were text messaging (4/16, 25%), native mobile apps (3/16, 19%), Web-based apps (5/16, 31%), mobile directly observed therapy (2/16, 13%), internet-delivered cognitive behavioral therapy (2/16, 13%), electronic pill bottle (1/16, 6%), or interactive gamification (2/16, 13%). Interventions targeted monitoring or improvement of medication adherence (5/16, 31%); self-management, pain reporting, and symptom reporting (7/16, 44%); stress, coping, sleep, and daily activities reporting (4/16, 25%); cognitive training for memory (1/16, 6%); sickle cell disease and reproductive health knowledge (5/16, 31%); cognitive behavioral therapy (2/16, 13%); and guided relaxation interventions (1/16, 6%). Most studies (11/16, 69%) included older children or adolescents (mean or median age 10-17 years; 11/16, 69%) and 5 included young adults (≥18 years old) (5/16, 31%). Sample size ranged from 11 to 236, with a median of 21 per study: <20 in 6 (38%), ≥20 to <50 in 6 (38%), and >50 participants in 4 studies (25%). Most reported improvement in self-management-related outcomes (15/16, 94%), as well as high satisfaction and acceptability of different study interventions (10/16, 63%).ConclusionsOur systematic review identified eHealth interventions measuring a variety of outcomes, which showed improvement in multiple components of self-management of sickle cell disease. Despite the promising feasibility and acceptability of eHealth interventions in improving self-management of sickle cell disease, the evidence overall is modest. Future eHealth intervention studies are needed to evaluate their efficacy, effectiveness, and cost effectiveness in promoting self-management in patients with sickle cell disease using rigorous methods and theoretical frameworks with clearly defined clinical outcomes.©Sherif M Badawy, Robert M Cronin, Jane Hankins, Lori Crosby, Michael DeBaun, Alexis A Thompson, Nirmish Shah. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 19.07.2018.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.