• J Craniofac Surg · Jan 2012

    Comparative Study

    Orbital stress analysis, Part IV: Use of a "stiffness-graded" biodegradable implants to repair orbital blow-out fracture.

    • Jehad Al-Sukhun, Heikki Penttilä, and Nureddin Ashammakhi.
    • Department of Oral Surgery, Euro-Oral Hammaslääkärikeskus, Helsinki, Finland. jalsukhun@hotmail.com
    • J Craniofac Surg. 2012 Jan 1; 23 (1): 126-30.

    PurposeThe purpose of this study was to develop a finite element model (FEM) of a human orbit, of 1 patient, who had an orbital blow-out fracture, to study the effect of using a "stiffness-graded" (SG) biodegradable implant on the biomechanics of bone-fracture repair.MethodsAn FEM of the orbit and the globe, of 1 patient who had an orbital blow-out fracture and was treated with biodegradable poly-L/DL-lactide [P(L/DL)LA 70/30], was generated based on computed tomography scan images. Simulations were performed with a computer using a commercially available finite element software. The FEM was then used to study the effect of using an SG biodegradable implant on the stress distribution in the fractured bone. This was compared with the stress distribution at the fracture interface and at the bone-implant interface, when using P(L/DL)LA implant with a uniform stiffness.ResultsThe use of SG implants caused less stress shielding to the fractured bone. At 50% of the bone healing stage, stress at the fracture interface was compressive in nature, that is, 0.2 MPa for the uniform implant, whereas SG implants resulted in tensile stress of 0.2 MPa. The result was that SG implants allowed the 50% healed bone to participate in loadings. Stiffness-graded implants are more flexible and hence permit more bending of the fractured bone. This results in higher compressive stresses, induced at the fractured faces, to accelerate bone healing. However, away from the fracture interface, the reduced stiffness and elastic modulus of the implant cause the neutral axis of the composite structure to be lowered into the bone, resulting in the higher tensile stress in the bone layer underneath the implant.ConclusionsThe use of SG implants induced significant changes in the stress patterns at the fracture interface and at the bone-implant interface. Stiffness-graded biodegradable implants offered less stress shielding to the bone, providing higher compressive stress at the fractured surface, to induce accelerated bone healing, as well as higher tensile stress in the intact portion of the bone. It seems that this is the first reported study, in the literature, on the use of SG biodegradable implants to repair and promote bone healing at the fracture site of the inferior orbital wall bone defect.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.