-
J. Med. Internet Res. · Sep 2020
Consumer-Grade Wearable Device for Predicting Frailty in Canadian Home Care Service Clients: Prospective Observational Proof-of-Concept Study.
- Ben Kim, Sandra M McKay, and Joon Lee.
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada.
- J. Med. Internet Res. 2020 Sep 3; 22 (9): e19732.
BackgroundFrailty has detrimental health impacts on older home care clients and is associated with increased hospitalization and long-term care admission. The prevalence of frailty among home care clients is poorly understood and ranges from 4.0% to 59.1%. Although frailty screening tools exist, their inconsistent use in practice calls for more innovative and easier-to-use tools. Owing to increases in the capacity of wearable devices, as well as in technology literacy and adoption in Canadian older adults, wearable devices are emerging as a viable tool to assess frailty in this population.ObjectiveThe objective of this study was to prove that using a wearable device for assessing frailty in older home care clients could be possible.MethodsFrom June 2018 to September 2019, we recruited home care clients aged 55 years and older to be monitored over a minimum of 8 days using a wearable device. Detailed sociodemographic information and patient assessments including degree of comorbidity and activities of daily living were collected. Frailty was measured using the Fried Frailty Index. Data collected from the wearable device were used to derive variables including daily step count, total sleep time, deep sleep time, light sleep time, awake time, sleep quality, heart rate, and heart rate standard deviation. Using both wearable and conventional assessment data, multiple logistic regression models were fitted via a sequential stepwise feature selection to predict frailty.ResultsA total of 37 older home care clients completed the study. The mean age was 82.27 (SD 10.84) years, and 76% (28/37) were female; 13 participants were frail, significantly older (P<.01), utilized more home care service (P=.01), walked less (P=.04), slept longer (P=.01), and had longer deep sleep time (P<.01). Total sleep time (r=0.41, P=.01) and deep sleep time (r=0.53, P<.01) were moderately correlated with frailty. The logistic regression model fitted with deep sleep time, step count, age, and education level yielded the best predictive performance with an area under the receiver operating characteristics curve value of 0.90 (Hosmer-Lemeshow P=.88).ConclusionsWe proved that a wearable device could be used to assess frailty for older home care clients. Wearable data complemented the existing assessments and enhanced predictive power. Wearable technology can be used to identify vulnerable older adults who may benefit from additional home care services.©Ben Kim, Sandra M McKay, Joon Lee. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 03.09.2020.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.