• Crit Care · Apr 2021

    Novel criteria to classify ARDS severity using a machine learning approach.

    • Mohammed Sayed, David Riaño, and Jesús Villar.
    • Banzai Research Group On Artificial Intelligence, Department of Computer Engineering, Universitat Rovira I Virgili, Av Paisos Catalans 26, 43007, Tarragona, Spain. mgamal.sayed@urv.cat.
    • Crit Care. 2021 Apr 20; 25 (1): 150.

    BackgroundUsually, arterial oxygenation in patients with the acute respiratory distress syndrome (ARDS) improves substantially by increasing the level of positive end-expiratory pressure (PEEP). Herein, we are proposing a novel variable [PaO2/(FiO2xPEEP) or P/FPE] for PEEP ≥ 5 to address Berlin's definition gap for ARDS severity by using machine learning (ML) approaches.MethodsWe examined P/FPE values delimiting the boundaries of mild, moderate, and severe ARDS. We applied ML to predict ARDS severity after onset over time by comparing current Berlin PaO2/FiO2 criteria with P/FPE under three different scenarios. We extracted clinical data from the first 3 ICU days after ARDS onset (N = 2738, 1519, and 1341 patients, respectively) from MIMIC-III database according to Berlin criteria for severity. Then, we used the multicenter database eICU (2014-2015) and extracted data from the first 3 ICU days after ARDS onset (N = 5153, 2981, and 2326 patients, respectively). Disease progression in each database was tracked along those 3 ICU days to assess ARDS severity. Three robust ML classification techniques were implemented using Python 3.7 (LightGBM, RF, and XGBoost) for predicting ARDS severity over time.ResultsP/FPE ratio outperformed PaO2/FiO2 ratio in all ML models for predicting ARDS severity after onset over time (MIMIC-III: AUC 0.711-0.788 and CORR 0.376-0.566; eICU: AUC 0.734-0.873 and CORR 0.511-0.745).ConclusionsThe novel P/FPE ratio to assess ARDS severity after onset over time is markedly better than current PaO2/FiO2 criteria. The use of P/FPE could help to manage ARDS patients with a more precise therapeutic regimen for each ARDS category of severity.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…